
USER’S GUIDE

RASTERFLEX™ Raster Accelerators

Release 4.5

USER’S GUIDE

RASTERFLEX™ Raster Accelerators

COPYRIGHTS

Copyright © 1991-1996 by Connectware, Inc., including this documentation and all software. All rights
reserved. May only be used pursuant to a Connectware, Inc. software license agreement. No part of this
publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any
language or computer language, in any form or by any means, electronic, mechanical, magnetic, optical,
chemical, manual, or otherwise, without written permission of Connectware, Inc. This document was prepared
by Connectware, Inc., and was printed in the United States of America.

FAR OR DFARS RESTRICTED RIGHTS APPLY TO U.S. GOVERNMENT USE, AS APPLICABLE:

Restricted Rights Notice

Use, reproduction, or disclosure is subject to restrictions as set forth in FAR 52.227-19(c)(2)
Commercial Computer Software - Restricted Rights. Unpublished-rights reserved under the
copyright laws of the United States.

Restricted Rights Legend

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) in the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013.

Contractor / Manufacturer is:
Connectware, Inc., 1301 East Arapaho Road, Richardson, Texas 75081

FCC INFORMATION

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1)
this device may not cause harmful interference, and (2) this device must accept any interference received,
including interference that may cause undesired operation.

RADIO FREQUENCY INTERFERENCE STATEMENT

NOTE: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant
to Part 15, Subpart B of the FCC Rules. This equipment generates, uses, and can radiate radio frequency energy.
If not installed and used in accordance with the instructions, it may cause interference to radio communications.

The limits are designed to provide reasonable protection against such interference in a commercial environment.
However, there is no guarantee that interference will not occur in a particular installation. If this equipment does
cause interference to radio or television reception, which can be determined by turning the equipment on and off,
the user is encouraged to try to correct the interference by one of more of the following measures:

• Reorient or relocate the receiving antenna of the affected radio or television

• Increase the separation between the equipment and the affected receiver

• Connect the equipment and affected receiver to power outlets on separate circuits

• Consult the dealer or an experienced radio/TV technician for help

MODIFICATIONS

Changes or modifications not expressly approved by Connectware, Inc. could void the user’s authority to operate
this equipment.

SHIELDED CABLES

Shielded cables must be used with this equipment to maintain compliance with FCC Regulations.

CE MARK INFORMATION

The RASTERFLEX products are in conformity with the following standards or other normative documents:

• EN 55022, Class B, Limits and methods of measurement of radio interference characteristics of
information technology equipment, 1987.

• EN 50082-1, Electromagnetic compatibility - Generic immunity standard -- Part 1: Residential,
commercial, and light industry, January 1992.

following the provisions of The Electromagnetic Compatibility Directive, 89/336/EEC.

This product may cause radio interference in which case the user may be required to take adequate measures.

DISCLAIMER

The information in this document is subject to change without notice. CONNECTWARE, INC. MAKES NO
WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
IN NO EVENT SHALL CONNECTWARE, INC. BE LIABLE FOR SPECIAL OR CONSEQUENTIAL
DAMAGES ARISING FROM THE USE OF THIS MATERIAL OR THE PRODUCTS DESCRIBED HEREIN.
Connectware, Inc. assumes no responsibility for any errors that may appear in this document. Connectware, Inc.
makes no commitment to update nor to keep current the information contained in this document.

TRADEMARKS

VITec, RASTERFLEX, RASTERFLEX-24, RASTERFLEX-32, RASTERFLEX-HR, RasterFlex-TV and RasterVideo are
trademarks of Connectware, Inc. X Window System is a trademark of Massachusetts Institute of Technology.
OpenWindows, X11/NeWS, SunTools, SunView and pixrect are trademarks of Sun Microsystems, Inc.
SPARCstation is a trademark of SPARC International, Inc., licensed exclusively by Sun Microsystems, Inc.

DOCUMENT NUMBER

16-DA3019-2

RELEASE HISTORY

Release 1.1 December 14, 1991
Release 1.2 February 14, 1992
Release 3.0 November 13, 1992
Release 3.1 March 15, 1993
Release 3.2 June 4, 1993
Release 3.3 July 31, 1993
Release 4.0 February 28, 1994
Release 4.0 Rev B May 11, 1994
Release 4.0 Rev C May 22, 1995
Release 4.5 May, 1996

COPYRIGHT AND PERMISSION NOTICES

This section lists the copyright and permission notices from Connectware’s Licensors for the use of software and
related documentation.

MIT

Since the X Window System is being distributed as part of this software release, Connectware includes the
following copyright and permission notices. They apply only to the X Window System.

Copyright © 1989 by the Massachusetts Institute of Technology

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without
fee is hereby granted, provided that the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that the name of MIT not be used in
advertising or publicity pertaining to distribution of the software without specific prior written permission. M.I.T.
makes no representation about the suitability of this software for any purpose. It is provided “as is” without any
express or implied warranty.

Sun Microsystems

OpenWindows™ V3 X11/NeWS Server

Copyright © 1989-1992 Sun Microsystems, Inc. All rights reserved.

OpenWindows is a product of Sun Microsystems, Inc. X11/NeWS Server contains copyrighted software licensed
from Sun. Unauthorized duplication is strictly prohibited. Connectware X11/NeWS Server software is available
for use and is subject to the restrictions of the Connectware Right To Use (RTU) software license agreement for
OpenWindows software products.

July 10, 1996 1TOC.

TABLE OF CONTENTS

1. INTRODUCTION...1.1
1.1. WHO TO CALL FOR HELP..1.1
1.2. HOW THIS DOCUMENT IS ORGANIZED...................................1.1
1.3. ABBREVIATIONS, ACRONYMS, AND MNEMONICS.................1.2
1.4. CONVENTIONS...1.3

2. SYSTEM CONFIGURATION ISSUES..2.1
2.1. SELECTING THE SBUS SLOT..2.1
2.2. SELECTING THE CONSOLE DEVICE..2.1
2.3. LIMITATIONS OF SPECIFIC WORKSTATIONS.........................2.1

2.3.1. SPARCSTATION 1/1+ SLOT LIMITATIONS2.1
2.3.2. SPARCSTATION IPC FRAMEBUFFER2.2
2.3.3. SPARCSTATION IPX GRAPHICS ACCELERATOR...........2.2
2.3.4. SPARCSTATION LX GRAPHICS ACCELERATOR............2.2
2.3.5. SPARC CLASSIC ..2.2
2.3.6. SPARCSTATION 10 AND 20 SBUS SLOTS.......................2.3
2.3.7. SPARCSYSTEM/SPARCSERVER 600MP SBUS SLOTS..2.3

2.4. CHANGING THE SBUS PROBE LIST...2.3
2.5. VERIFYING THE MONITOR AND CABLE COMPATIBILITY......2.4
2.6. SELECTING MONITOR RESOLUTION.......................................2.5

3. INSTALLING YOUR RASTERFLEX HARDWARE................................3.1
3.1. BEFORE YOU START...3.1

3.1.1. PROTECTION FROM STATIC ..3.1
3.1.2. TOOLS YOU WILL NEED..3.1
3.1.3. SELECTING THE SLOT ..3.1
3.1.4. CHECKING THE MONITOR CABLES.................................3.1

3.2. SHUTTING DOWN THE WORKSTATION...................................3.2
3.3. DISCONNECTING THE MONITOR CABLES..............................3.2
3.4. REMOVING THE WORKSTATION COVER................................3.3
3.5. REMOVING THE EXISTING FRAMEBUFFER CARD.................3.4
3.6. INSTALLING THE RASTERFLEX CARD3.4
3.7. REPLACING THE WORKSTATION COVER...............................3.6
3.8. CONNECTING THE MONITOR...3.6

3.8.1. WHEN REPLACING YOUR SUN FRAMEBUFFER3.6
3.8.2. WHEN KEEPING THE SUN FRAMEBUFFER3.6

3.9. TURN ON POWER ..3.7
3.10. PERFORM A RECONFIGURATION BOOT...............................3.7

4. INSTALLING YOUR RASTERFLEX SOFTWARE.................................4.1
4.1. WHAT YOU WILL NEED..4.1
4.2. SOFTWARE OVERVIEW...4.1

4.2.1. SOFTWARE REQUIREMENTS...4.2

Release 4.52TOC.

TABLE OF CONTENTS

4.2.2. THE DEVICE DRIVER... 4.2
4.2.3. THE X11R5 WINDOWING ENVIRONMENT....................... 4.3
4.2.4. THE X11/NeWS ENVIRONMENT 4.3
4.2.5. THE LOADABLE DDX ENVIRONMENT 4.3

4.3. INSTALLING THE SOFTWARE .. 4.4
4.3.1. LOG IN AS ROOT. .. 4.4
4.3.2. INSERT THE RELEASE CD-ROM 4.4
4.3.3. MOUNT THE CD-ROM FILESYSTEM 4.4
4.3.4. EXPORT THE CD-ROM FILESYSTEM (REMOTE)............ 4.4
4.3.5. NFS MOUNT THE CD-ROM FILESYSTEM (REMOTE) 4.5
4.3.6. EXECUTE THE RFXINSTALL UTILITY 4.5

4.4. CONFIGURING THE SOFTWARE RELEASE 4.6
4.5. CONTENTS OF THE SOLARIS 1 (SUNOS 4.1.X) RELEASE 4.7

4.5.1. DEVICE DRIVER... 4.7
4.5.2. OPENWINDOWS 3.0 X11/NEWS SERVER 4.7
4.5.3. OPENWINDOWS 3.0 MANUAL PAGES 4.7
4.5.4. X11R5 SERVER.. 4.7
4.5.5. X11R5 FONTS... 4.8
4.5.6. X11R5 CLIENTS.. 4.8
4.5.7. X11R5 DEVELOPMENT ENVIRONMENT 4.9
4.5.8. X11R5 MANUAL PAGES .. 4.10

4.6. CONTENTS OF THE SOLARIS 2 (SUNOS 5.X) RELEASE 4.10
4.6.1. VITrdrvr - DEVICE DRIVER... 4.10
4.6.2. VITropwin - X11/NEWS ENVIRONMENT.......................... 4.10
4.6.3. VITrfddx - OW LOADABLE DDX ENVIRONMENT............ 4.11
4.6.4. VITrxserv - X11R5 SERVER ... 4.11
4.6.5. VITrxfont - X11R5 FONTS... 4.11
4.6.6. VITrxsupt - X11R5 SUPPORT ENVIRONMENT 4.12
4.6.7. VITrxman - X11R5 MANUAL PAGES................................ 4.13

5. RASTERFLEX X11R5 WINDOWING ENVIRONMENT......................... 5.1
5.1. X11R5 SOFTWARE COMPONENTS.. 5.1

5.1.1. SOFTWARE RELEASE BUTLER.. 5.1
5.1.2. SOFTWARE CONFIGURATION MECHANIC 5.1
5.1.3. DEVICE DRIVER... 5.1
5.1.4. SERVER & RGB DATABASE.. 5.2
5.1.5. X FONTS ... 5.2
5.1.6. X CLIENTS .. 5.2
5.1.7. X DEVELOPMENT ENVIRONMENT................................... 5.2
5.1.8. X MANUAL PAGES... 5.2

5.2. SETTING UP THE USER ENVIRONMENT................................. 5.2
5.2.1. LOCATING SERVER RESOURCES................................... 5.3

July 10, 1996 3TOC.

TABLE OF CONTENTS

5.2.2. LOCATING SHARED LIBRARIES.......................................5.4
5.2.3. SETTING THE PATH VARIABLE ..5.4
5.2.4. LOCATING MANUAL PAGES ...5.4
5.2.5. SETTING UP APPLICATION DEFAULTS...........................5.4

5.3. THE RASTERFLEX X11R5 SERVER (Xrfx)5.5
5.3.1. INVOKING THE X11R5 SERVER..5.5
5.3.2. X11R5 (Xrfx) SERVER OPTIONS5.8
5.3.3. USING MULTIPLE SCREENS...5.12
5.3.4. RASTERFLEX COMPATIBILITY ISSUES.........................5.12
5.3.5. USING THE VISUAL SELECTION EXTENSION...............5.15
5.3.6. OVERLAY MODE SELECTION...5.16
5.3.7. MULTIPLE LOOK-UP TABLE MANAGEMENT5.18

6. RASTERFLEX X11/NEWS ENVIRONMENT ...6.1
6.1. OPENWINDOWS SOFTWARE COMPONENTS.........................6.1

6.1.1. SOFTWARE RELEASE BUTLER..6.1
6.1.2. SOFTWARE CONFIGURATION MECHANIC6.1
6.1.3. DEVICE DRIVER ...6.2
6.1.4. X11/NEWS SERVER (xnews-rfx) ..6.2
6.1.5. OPENWINDOWS MANUAL PAGES6.2

6.2. SETTING UP THE USER ENVIRONMENT.................................6.2
6.2.1. LOCATING SERVER RESOURCES6.2
6.2.2. LOCATING SHARED LIBRARIES.......................................6.3
6.2.3. SETTING THE PATH VARIABLE ..6.3
6.2.4. LOCATING MANUAL PAGES ...6.3

6.3. THE RASTERFLEX X11/NEWS SERVER...................................6.3
6.4. INVOKING THE X11/NEWS SERVER...6.4

6.4.1. REQUIRED CONDITIONS...6.4
6.4.2. X11/NEWS (xnews-rfx) SERVER OPTIONS6.7
6.4.3. USING MULTIPLE SCREENS...6.9
6.4.4. RASTERFLEX COMPATIBILITY ISSUES.........................6.10
6.4.5. USING THE VISUAL SELECTION EXTENSION...............6.12
6.4.6. OVERLAY MODE SELECTION...6.13
6.4.7. MULTIPLE LOOK-UP TABLE MANAGEMENT6.15

7. RASTERFLEX LOADABLE DDX ENVIRONMENT...............................7.1
7.1. LOADABLE DDX SOFTWARE COMPONENTS..........................7.1

7.1.1. SOFTWARE RELEASE BUTLER..7.1
7.1.2. SOFTWARE CONFIGURATION MECHANIC7.1
7.1.3. DEVICE DRIVER ...7.1
7.1.4. LOADABLE DDX MODULE ...7.2

7.2. SETTING UP THE USER ENVIRONMENT.................................7.2
7.2.1. LOCATING SERVER RESOURCES7.2

Release 4.54TOC.

TABLE OF CONTENTS

7.2.2. LOCATING SHARED LIBRARIES....................................... 7.2
7.2.3. SETTING THE PATH VARIABLE.. 7.3
7.2.4. LOCATING MANUAL PAGES ... 7.3

7.3. THE RASTERFLEX LOADABLE DDX MODULE 7.3
7.4. INVOKING THE OPENWINDOWS X SERVER........................... 7.3

7.4.1. REQUIRED CONDITIONS .. 7.4
7.4.2. USING MULTIPLE SCREENS .. 7.6
7.4.3. RASTERFLEX COMPATIBILITY ISSUES........................... 7.6
7.4.4. USING THE VISUAL SELECTION EXTENSION 7.9
7.4.5. OVERLAY MODE SELECTION... 7.10
7.4.6. MULTIPLE LOOK-UP TABLE MANAGEMENT................. 7.13

8. HARDWARE OVERVIEW.. 8.1
8.1. RASTERFLEX CAPABILITIES .. 8.1

8.1.1. RASTERFLEX FEATURES ... 8.1
8.1.2. RASTERFLEX-32/HR ARCHITECTURE............................. 8.2
8.1.3. RASTERFLEX-24 ARCHITECTURE................................... 8.3

9. RASTERFLEX ADVANCED FEATURES.. 9.1
9.1. USING NON-DEFAULT VISUAL CLASSES................................ 9.1
9.2. USING OVERLAYS ... 9.2
9.3. USING SHARED MEMORY .. 9.9

9.3.1. USING SHARED MEMORY IMAGES. 9.9
9.3.2. USE OF SHARED MEMORY PIXMAPS 9.12

Appendix A. SPECIFICATIONS..A.1
 PHYSICAL CHARACTERISTICS — RASTERFLEX-24....................A.1
 PHYSICAL CHARACTERISTICS — RASTERFLEX-32....................A.1
 PHYSICAL CHARACTERISTICS — RASTERFLEX-HR...................A.2
 RASTERFLEX-24/32/HR PERFORMANCEA.2

Appendix B. VIDEO FORMATS..B.1
 1024x768 76 HZ VIDEO FORMAT..B.1
 1152x900 66 HZ VIDEO FORMAT..B.2
 1152x900 76 HZ VIDEO FORMAT..B.3
 1280x1024 60Hz VIDEO FORMAT ...B.4
 1280x1024 67Hz VIDEO FORMAT ...B.5
 1280x1024 76 HZ VIDEO FORMAT..B.6

July 10, 1996 1LOF.

LIST OF FIGURES

Figure 2.1. 13W3-to-4BNC cable for BNC connector monitor.2.4
Figure 2.2. 13W3-to-13W3 cable for D-shell connector monitor.2.4
Figure 2.3. 13W3 connection on the RASTERFLEX card...........................2.5
Figure 2.4. Resolution Selection Jumpers - RasterFlex-24 and -322.5
Figure 2.5. Resolution Selection Jumpers - RasterFlex-HR2.6

Figure 3.1. Disconnect the monitor video cable from the framebuffer.3.2
Figure 3.2. Top view of SPARCstations with cover removed......................3.3
Figure 3.3. Remove existing framebuffer card. ...3.4
Figure 3.4. Remove the Backplate Adapter, if necessary.3.5
Figure 3.5. Install backplate end of the card first.3.5
Figure 3.6. Connect the video cable to the RASTERFLEX.........................3.6
Figure 3.7. 13W3-to-4BNC cable for BNC connector monitor.3.7
Figure 3.8. 13W3-to-13W3 cable for D-shell connector monitor.3.7

Figure 5.1. Hardware pixel format...5.17
Figure 5.2. Hardware pixel format — 4-bit overlay model.........................5.17

Figure 6.1. Hardware pixel format...6.14
Figure 6.2. Hardware pixel format — 4-bit overlay model.........................6.14

Figure 7.1. Hardware pixel format...7.11
Figure 7.2. Hardware pixel format — 4-bit overlay model.........................7.12

Figure 8.1. RASTERFLEX-32 and RASTERFLEX-HR Block Diagram.......8.2

Figure 8.2. RASTERFLEX-24 Block Diagram...8.3

Figure 9.1. Transparency and visibility..9.4

Release 4.52LOF.

LIST OF FIGURES

July 10, 1996 1LOT.

LIST OF TABLES

Table 1.1. Abbreviations, Acronyms, and Mnemonics1.2
Table 1.2. Conventions ..1.3

Table 4.1. RASTERFLEX Operating System Support4.2

Table 6.1. Default Color Classes ...6.12

Table A.1. Physical Characteristics of RF-24 ...A.1

Table A.2. Physical Characteristics of RF-32 ...A.1
Table A.3. Physical Characteristics for RF-HR ..A.2
Table A.4. 8-bit Performance Specifications for RF-24/32/HRA.2
Table A.5. 24-bit Performance Specifications for RF-24/32/HRA.2

Table B.1. Horizontal timing for 1024x768 76 Hz video formatB.1
Table B.2. Vertical timing for 1024x768 76 Hz video formatB.1
Table B.3. Horizontal timing for 1152x900 66 Hz video formatB.2
Table B.4. Vertical timing for 1152x900 66 Hz video formatB.2
Table B.5. Horizontal timing for 1152x900 76 Hz video formatB.3
Table B.6. Vertical timing for 1152x900 66 Hz video formatB.3
Table B.7. Horizontal timing for 1280x1024 60Hz video formatB.4
Table B.8. Vertical timing for 1280x1024 60Hz video formatB.4
Table B.9. Horizontal timing for 1280x1024 67Hz video formatB.5
Table B.10. Vertical timing for 1280x1024 67Hz video formatB.5
Table B.11. Horizontal timing for 1280x1024 76Hz video formatB.6
Table B.12. Vertical timing for 1280x1024 76Hz video formatB.6

Release 4.52LOT.

LIST OF TABLES

July 10, 1996 11.

1. INTRODUCTION

Congratulations on the purchase of a RASTERFLEX Raster Accelerator, designed and
manufactured by Connectware, Inc. (Connectware), of Richardson, Texas.

This document provides the user with information on how to install the RASTERFLEX

Raster Accelerator hardware and software into any SBus-capable Sun workstation. The
RASTERFLEX software runs under SunOS 4.1.X or under Sun Solaris 2.1 and later. To use
the RASTERFLEX OpenWindows software, Sun’s OpenWindows 3 environment must be
installed on your system prior to RASTERFLEX software installation.

This section describes the organization of this document and lists abbreviations,
acronyms, mnemonics, and conventions used in this document.

1.1. WHO TO CALL FOR HELP

If you need help, you can call our Customer Assistance Center at (800) 654-7608 or at
(214) 997-4188. Our electronic mail address is “support@connectware.com”.

1.2. HOW THIS DOCUMENT IS ORGANIZED

This document is organized into 9 sections and two appendices. Each section is described
briefly below:

SECTION 1. INTRODUCTION — provides our Customer Assistance Center number,
describes the organization of this document and lists abbreviations, acronyms,
mnemonics, and conventions used throughout this document.

SECTION 2. SYSTEM CONFIGURATION ISSUES — describes configuration issues to
consider when keeping the current framebuffer (running two monitors) or when installing
your RASTERFLEX card in certain SPARCstation models. It includes information on
selecting the SBus slot and console device, limitations of specific workstations, changing
the sbus-probe-list, and verifying the monitor and cable compatibility.

SECTION 3. INSTALLING YOUR RASTERFLEX CARD — provides general instructions
about installing your RASTERFLEX card.

SECTION 4. INSTALLING YOUR RASTERFLEX SOFTWARE — provides an overview of
the software environment for the RASTERFLEX framebuffers and how to install and
configure the software.

SECTION 5. RASTERFLEX X11R5 WINDOWING ENVIRONMENT — describes the
features of the X Window System server that supports MIT’s X11R5 implementation of
the X windowing system on your SPARCstation. This section provides an overview of the
software components provided within the RASTERFLEX X11R5 Environment as well as
specific information on how to use the RASTERFLEX X server (Xrfx).

SECTION 6. RASTERFLEX X11/NEWS ENVIRONMENT — describes the features of the
RASTERFLEX X11/NeWS server for Solaris 1.X (SunOS 4.1.X) that is fully compatible
with OpenWindows Version 3.0, 3.1, and 3.2 from SunSoft and provides additional

USER’S GUIDE
RASTERFLEX

Release 4.521.

support for the unique capabilities of the RASTERFLEX hardware. This section provides an
overview of the software components provided within the RASTERFLEX OpenWindows
Environment as well as specific information on how to use the RASTERFLEX X11/NeWS
server (xnews-rfx).

SECTION 7. RASTERFLEX LOADABLE DDX ENVIRONMENT — describes the features
of the RASTERFLEX Loadable DDX Module that is fully compatible with OpenWindows
Version 3.3 and later from SunSoft and provides additional support for the unique
capabilities of the RASTERFLEX hardware. This section provides an overview of the
software components provided within the RASTERFLEX Loadable DDX Module
Environment as well as specific information on how to use the RASTERFLEX module with
the OpenWindows X server (Xsun).

SECTION 8. HARDWARE OVERVIEW — provides an overview of the RASTERFLEX

accelerator cards, including a list of features and descriptions of the functionality of each
of the RASTERFLEX cards.

SECTION 9. RASTERFLEX ADVANCED FEATURES — contains detailed descriptions of
the advanced features of the RASTERFLEX cards and is provided for X programmers who
want to develop their own applications. The section includes descriptions on the ability to
use visual classes other than the server default, for example, using 24-bit windows when
the server is brought up with 8-bit as the default; using overlays; and using shared memory
for faster XPutImage and XGetImage. Each description includes an example.

APPENDIX A. SPECIFICATIONS — includes specifications for the RASTERFLEX-24,
RASTERFLEX-32, and RASTERFLEX-HR raster accelerator cards, including physical
characteristics and 8-bit and 24-bit performance specifications.

APPENDIX B. VIDEO FORMATS — includes horizontal and vertical timing for the video
formats used by the RASTERFLEX cards.

1.3. ABBREVIATIONS, ACRONYMS, AND MNEMONICS

The following abbreviations, acronyms, and mnemonics are used in this document:

Table 1.1. Abbreviations, Acronyms, and Mnemonics

Term Description

ASIC Application-Specific Integrated Circuit

BitBlt Bit Block Transfer

BW2 Sun Black-and-White Framebuffer

CG3 Sun 8-bit Pseudocolor Framebuffer

CG4 Sun 8-bit Pseudocolor Framebuffer

CG6 Sun GX 8-bit Accelerated Framebuffer

INTRODUCTION
CONVENTIONS

July 10, 1996 31.

1.4. CONVENTIONS

The following conventions are used in this document:

DAC Digital-to-Analog Converter

DDX Device Dependent X

DVMA Direct Virtual Memory Access

EEPROM Electrically Erasable Programmable Read-Only Memory

GC Graphics Context

LSB Least Significant Bit

LUT Look-Up Table

NeWS Network Extensible Window System

RF-24 24-bit RASTERFLEX card

RF-32 32-bit RASTERFLEX card

RF-HR High-resolution 32-bit RASTERFLEX card

RGB Red, Green, and Blue planes

SCSI Small Computer Systems Interface

TWM Tab Window Manager

WTT Window Tag Table

X11R5 X11 Release 5

Table 1.2. Conventions

Convention Description

/usr/bin/X11 File, directory, and program names are
Courier regular

halt Command names, instructions and operands
are Courier bold

Title Titles are Helvetica oblique

SECTION Section names are Helvetica bold

Table 1.1. Abbreviations, Acronyms, and Mnemonics (Continued)

Term Description

USER’S GUIDE
RASTERFLEX

Release 4.541.

dir> System prompts include a directory name and
right angle bracket

type Arguments and options are Courier italic

program listing Listings of programs are indented Courier
regular text.

Table 1.2. Conventions

Convention Description

July 10, 1996 12.

2. SYSTEM CONFIGURATION ISSUES

This section describes configuration issues to consider when keeping the current
framebuffer (running two monitors) or when installing your RASTERFLEX card in certain
SPARCstation models. It includes information on selecting the SBus slot and console
device, limitations of specific workstations, changing the sbus-probe-list, and
verifying the monitor and cable compatibility.

2.1. SELECTING THE SBUS SLOT

For most applications, installing the RASTERFLEX hardware and software is
straightforward. If you are replacing a Sun framebuffer with a RASTERFLEX raster
accelerator, simply remove the Sun framebuffer and install the RASTERFLEX hardware and
software, following the instructions in this document.

If you are keeping the Sun framebuffer card in order to configure a two-monitor system,
or installing your RASTERFLEX card in certain SPARCstation models, you may have to
move this card or modify the values stored in EEPROM.

2.2. SELECTING THE CONSOLE DEVICE

The system selects the console display device at power-up when the boot software
“probes” for the first SBus slot device it finds that is capable of this function. The order in
which the slots are probed is determined by a parameter called sbus-probe-list, which
is stored in the SPARCstation EEPROM.

RASTERFLEX cards are fully capable of acting as the console display device. However, you
may prefer another framebuffer as the console display device. You can modify the sbus-

probe-list to change the order in which SBus slots are probed. For details, see the
paragraph on CHANGING THE SBUS PROBE LIST later in this section.

2.3. LIMITATIONS OF SPECIFIC WORKSTATIONS

The RASTERFLEX card(s) fits into any one of several Sun SPARCstation systems. Some of
these systems have limitations that must be considered before beginning to install the
RASTERFLEX card. These limitations are described in the following paragraphs.

2.3.1. SPARCSTATION 1/1+ SLOT LIMITATIONS

On SPARCstation 1 and SPARCstation 1+ machines, the RASTERFLEX cannot be installed
in SBus slot 3. Your system can include other SBus add-in cards, particularly SCSI disk
controllers, that require DVMA, and therefore also cannot be installed in SBus slot 3,
limiting the configuration options to one DVMA-capable card.

Two-slot cards present other limitations. For example, assume that you want to have both
a single-slot RASTERFLEX-32 and a double-slot Sun GX card — that you want to act as the
console device — installed in a SPARCstation 1. Since the RASTERFLEX cannot be
installed in slot 3, the only possibility is to install the GX card in slots 2 and 3, and the

USER’S GUIDE
RASTERFLEX

Release 4.522.

RASTERFLEX-32 in slot 1. The default value for sbus-probe-list would choose the
RASTERFLEX — in slot 1 — as the console device. To designate the Sun GX card as the
console device, set sbus-probe-list to “0231”. For details, see the paragraph on
CHANGING THE SBUS PROBE LIST later in this section.

2.3.2. SPARCSTATION IPC FRAMEBUFFER

On SPARCstation IPC machines, the motherboard includes a black-and-white framebuffer
that the system designates as logical SBus slot 3, even though there are only two physical
SBus slots. In order to select this framebuffer as the console display device, you must
change the sbus-probe-list to list slot 3 ahead of the RASTERFLEX slot.

For example, if the RASTERFLEX is installed in slot 1, you can designate the black-and-
white framebuffer to act as the console display device by setting the sbus-probe-list
to “0312”. For details, see the paragraph on CHANGING THE SBUS PROBE LIST later in
this section.

2.3.3. SPARCSTATION IPX GRAPHICS ACCELERATOR

On SPARCstation IPX machines, the motherboard includes a GX graphics accelerator. As
with the IPC, the IPX designates the graphics accelerator as logical SBus slot 3, even
though there are only two physical SBus slots. In order to select the GX as the console
display device, you must change the sbus-probe-list to list slot 3 ahead of the
RASTERFLEX slot.

For example, if the RASTERFLEX is installed in slot 1, you can designate the GX to act as
the console display device by setting the sbus-probe-list to “0312”. For details, see
the paragraph on CHANGING THE SBUS PROBE LIST later in this section.

2.3.4. SPARCSTATION LX GRAPHICS ACCELERATOR

On SPARCstation LX machines, the motherboard includes a GX graphics accelerator. As
with the IPC, the LX designates the graphics accelerator as logical SBus slot 3, even
though there are only two physical SBus slots. In order to select the GX as the console
display device, you must change the sbus-probe-list to list slot 3 ahead of the
RASTERFLEX slot.

For example, if the RASTERFLEX is installed in slot 0, you can designate the GX to act as
the console display device by setting the sbus-probe-list to “43012”. For details, see
the paragraph on CHANGING THE SBUS PROBE LIST later in this section.

2.3.5. SPARC CLASSIC

On SPARC Classic machines, the motherboard includes an 8-bit framebuffer that the
system designates as logical SBus slot 3, even though there are only two physical SBus
slots. In order to select this framebuffer as the console display device, you must change the
sbus-probe-list to list slot 3 ahead of the RASTERFLEX slot.

SYSTEM CONFIGURATION ISSUES
CHANGING THE SBUS PROBE LIST

July 10, 1996 32.

For example, if the RASTERFLEX is installed in slot 0, you can designate the 8-bit
framebuffer to act as the console display device by setting the sbus-probe-list to
“43012”. For details, see the paragraph on CHANGING THE SBUS PROBE LIST later in
this section.

2.3.6. SPARCSTATION 10 AND 20 SBUS SLOTS

On SPARCstation 10 and SPARCstation 20 machines, four SBus slots are provided, with
two each on two different levels. In order to install a RASTERFLEX card into a
SPARCstation 10 or 20, the SBus handle and backplate adapter must first be removed. The
holes where the SBus handle is normally installed are used by retaining hardware which
is a part of the SPARCstation. Refer to the instructions in the section entitled INSTALLING
THE RASTERFLEX CARD for instructions on removing the SBus handle and backplate
adapter.

2.3.7. SPARCSYSTEM/SPARCSERVER 600MP SBUS SLOTS

On SPARCsystem 600MP and SPARCserver 600MP machines, the CPU card must be
removed in order to install the RASTERFLEX card. In order to install the RASTERFLEX card
onto the CPU card, the SBus handle and backplate adapter must first be removed. The
holes where the SBus handle is normally installed are used by retaining hardware which
is provided with the SPARCsystem. Refer to the instructions in the section entitled
INSTALLING THE RASTERFLEX CARD for instructions on removing the SBus handle
and backplate adapter.

2.4. CHANGING THE SBUS PROBE LIST

To change the value of sbus-probe-list, you must have root privileges (you must be
the super-user). Nonvolatile RAM is accessed using the eeprom command. To determine
the current value of sbus-probe-list, type:

system% /usr/etc/eeprom sbus-probe-list [SunOS 4.1.X]

system% /usr/sbin/eeprom sbus-probe-list [Solaris 2.X]

The system responds with the current value of the sbus-probe-list. If the system is in
its default state, the response is:

sbus-probe-list=0123

sbus-probe-list=f0123 [SPARCstation 10, 600MP]

sbus-probe-list=40123 [SPARC Classic, SPARCstation LX]

For machines that include “4” or “f” as the first character of the sbus-probe-list string, be
sure to include the same first character in your replacement string. If you do not, the
machine will not boot. Should this happen inadvertently, you can restore the default values
by cycling power while holding down the “L1” and “N” keys until the machine comes up.

USER’S GUIDE
RASTERFLEX

Release 4.542.

To change the sbus-probe-list parameter value to “0312”, type:

system% /bin/su
Password: your_superuser_password

system% /usr/etc/eeprom sbus-probe-list=0312

Verify that the value was changed properly by using the eeprom command again:

system% /usr/etc/eeprom sbus-probe-list
sbus-probe-list=0312

Once you have changed the value of sbus-probe-list, you will need to cycle power on
your system in order for the changes to take effect.

2.5. VERIFYING THE MONITOR AND CABLE COMPATIBILITY

RASTERFLEX cards use a 13W3 coaxial D-shell connector for video output. This connector
is compatible with all Sun SPARCstation cabling. If you are replacing an existing Sun
color framebuffer with a RASTERFLEX raster accelerator, then simply plug the Sun video
cable into the RASTERFLEX card.

If you are installing a RASTERFLEX card into a SPARCstation that did not have a color
framebuffer previously, or if you are adding the RASTERFLEX as a second framebuffer
along with a second monitor, then you need to determine that the monitor and cabling both
are compatible with the new RASTERFLEX card. Connectware offers a color monitor and
cable for this purpose. If you would like to use another monitor, ensure that it is compatible
with the video format generated by the RASTERFLEX card. This format is described in
Appendix B.

To connect your monitor to the RASTERFLEX, you need one of two types of video cables,
depending on the connector type provided on your monitor. If the monitor has separate
BNC connectors for Red, Green, Blue, and Sync, you need a 13W3-to-4BNC video cable.

Figure 2.1. 13W3-to-4BNC cable for BNC connector monitor.

If the monitor has a 13W3 coaxial D-shell connector, you will need a 13W3-to-13W3
video cable. This is the same cable that Sun supplies with their color systems.

Figure 2.2. 13W3-to-13W3 cable for D-shell connector monitor.

Connects to
RASTERFLEX

Card

Connects to
Monitor

Connects to
RASTERFLEX

Card

Connects to
Monitor

SYSTEM CONFIGURATION ISSUES
SELECTING MONITOR RESOLUTION

July 10, 1996 52.

The end view of the 13W3 connector on the RASTERFLEX card is illustrated in the
following figure:

Figure 2.3. 13W3 connection on the RASTERFLEX card.

2.6. SELECTING MONITOR RESOLUTION

The RASTERFLEX cards are capable of automatically configuring the video resolution to
adapt to the monitor they are connected to. All Sun monitors provide sense information
which enables the frame buffer to automatically generate the appropriate video resolution.
In most cases, this will work transparently, and no action is required by the user.

However, in special cases, you may wish to override the automatic selection mechanism.
For instance, if you are using a non-Sun monitor (which does not provide the monitor
sense lines) the RASTERFLEX will default to 1152x900 66 Hz resolution. If your monitor
requires one of the other supported resolutions, you can select the desired resolution by
means of jumpers on the card.

Figure 2.4. Resolution Selection Jumpers - RasterFlex-24 and -32

J2
J3
J4

J2
J3
J4

J2
J3
J4

1024x768 76 Hz (SVGA)

1152x900 66 Hz

1152x900 76 Hz

J2
J3
J4

Automatic Configuration
 (default)

USER’S GUIDE
RASTERFLEX

Release 4.562.

Figure 2.5. Resolution Selection Jumpers - RasterFlex-HR

To select a particular video resolution, install the jumpers at locations J2 through J4 as
shown in the applicable figure above. Be sure to retain any spare jumpers in case you need
to change the selection in the future. The new jumper settings will take effect the next time
power is applied.

J2
J3
J4

J2
J3
J4

J2
J3
J4

1024x768 76 Hz (SVGA)

1152x900 66 Hz

1152x900 76 Hz

J2
J3
J4

Automatic Configuration
 (default)

J2
J3
J4

J2
J3
J4

J2
J3
J4

1280x1024 60Hz

1280x1024 67 Hz

1280x1024 76 Hz

July 10, 1996 13.

3. INSTALLING YOUR RASTERFLEX HARDWARE

This section provides general information to review before installing your RASTERFLEX

card, including protecting your card from static, tools you will need, selecting the slot,
checking the monitor cables, and general instructions on installing the card into any SBus-
capable SPARCstation.

NOTE
The figures in this section show examples of particular SPARCstation
types. Refer to the Installation Guide provided with your workstation for
specific instructions for SBus card installation.

3.1. BEFORE YOU START

This section reviews important information you will need before beginning the
installation. Please read this section before proceeding.

3.1.1. PROTECTION FROM STATIC

The RASTERFLEX card(s) is shipped in antistatic wrap. In addition, an antistatic wrist strap
is provided for your use. Please use the wrist strap when handling the card to avoid
electrostatic damage to the product.

3.1.2. TOOLS YOU WILL NEED

Refer to the Installation Guide provided with your workstation for a list of required tools.
For most workstation types, you will need a medium and/or small Phillips screwdriver.

3.1.3. SELECTING THE SLOT

Please read the section on SYSTEM CONFIGURATION ISSUES before installing the
hardware, if you are configuring either of the following systems:

• Installing the RASTERFLEX in a SPARCstation which does not currently have a
color framebuffer installed or

• Adding the RASTERFLEX as a second framebuffer.

3.1.4. CHECKING THE MONITOR CABLES

If you are configuring either of the following monitor setups, be certain that you have the
appropriate monitor cabling:

• Set up a dual-monitor configuration or

• Interface your RASTERFLEX card with a monitor other than the standard monitor
that is provided with your SPARCstation.

Please refer to the section on SYSTEM CONFIGURATION ISSUES for more information
on monitor cables.

USER’S GUIDE
RASTERFLEX

Release 4.523.

3.2. SHUTTING DOWN THE WORKSTATION

To shut down the machine, you must have root privileges (you must be the superuser).

1. Log on as superuser.

system% /bin/su

Password:your_root_password

2. Halt the system by entering the UNIX halt command.

system% /etc/halt

3. The system responds with information, such as the following:

syncing file systems... done

Halted

Program terminated

Type b (boot), c (continue), or n (new command mode)

>

4. Wait for the system boot prompt (“>” or “ok”) to appear.

5. Turn off power to the system unit. Leave the power cord plugged into the wall
outlet and workstation in order to provide electrostatic grounding. The AC power
in the system unit is limited to the inside of the power supply.

3.3. DISCONNECTING THE MONITOR CABLES

If you are going to use the monitor that is currently set up with your system, and replace
another framebuffer card with the RASTERFLEX card, then perform the following steps:

1. Turn off the monitor power switch.

2. Gain access to the rear of the unit.

3. Disconnect the video cable connection from the Sun monitor to the back of the
workstation unit.

Figure 3.1. Disconnect the monitor video cable from the framebuffer.

INSTALLING YOUR RASTERFLEX HARDWARE
REMOVING THE WORKSTATION COVER

July 10, 1996 33.

3.4. REMOVING THE WORKSTATION COVER

1. Remove the hardware retaining the SPARCstation cover. Refer to the Installation
Guide provided with your workstation for specific instructions.

2. Locate the SBus slots in your workstation, as illustrated in the following
footprints of example workstations. Refer to the Installation Guide provided with
your workstation for specific information on slot numbering.

Figure 3.2. Top view of SPARCstations with cover removed.

Rear

SBus
Slot 2

SBus
Slot 1

Hard
Disk
Drive

Power Supply

Floppy
Disk
Drive

Front

Rear

SBus
Slot 3

Front

SBus
Slot 2

SBus
Slot 1

Power
Supply

Hard Disk
Drives

Floppy Disk
Drive

SPARCstation IPC

SPARCstation1/ 2/5

Rear

SBus
Slot 1

SBus
Slot 0

Hard
Disk
Drive

Power Supply

Floppy
Disk
Drive

Front

SPARCstation LX/SPARC Classic

Rear

SBus
Slot 3

Front

SBus
Slot 2

MBus
Slots

Power
Supply

Hard Disk
Drives

Floppy Disk
Drive

SPARCstation 10/20

MBus
Slots

SBus
Slots

0 (bot)
1 (top)

SBus
Slots
2(bot)
3(top)

USER’S GUIDE
RASTERFLEX

Release 4.543.

3.5. REMOVING THE EXISTING FRAMEBUFFER CARD

If you are replacing the framebuffer card in your system with the RASTERFLEX card, then
perform the following steps:

1. Remove any retaining hardware.

2. Remove the framebuffer card by grasping the handle and pulling straight up. If
the card is two slots wide, pull up on both handles at the same time to avoid
flexing the card. If the existing card does not have a handle, grasp it above the
connector at both ends and pull straight up.

Figure 3.3. Remove existing framebuffer card.

3.6. INSTALLING THE RASTERFLEX CARD

The RASTERFLEX card can be installed in any SBus slot except slot 3 of a SPARCstation
1/1+ machine. Refer to Section 2.3 for details on this restriction.

1. Locate the SBus slots that are available for the RASTERFLEX card and decide into
which slot you will install your new RASTERFLEX card.

2. If you are installing the RASTERFLEX card in a previously unused slot, remove
the dummy backplate and any retaining hardware.

3. If your SPARCstation does not utilize the backplate adapter, remove the adapter
from your RASTERFLEX card using a small Phillips screwdriver.

2
2

11

SBus connectors

INSTALLING YOUR RASTERFLEX HARDWARE
INSTALLING THE RASTERFLEX CARD

July 10, 1996 53.

Figure 3.4. Remove the Backplate Adapter, if necessary.

4. If your workstation does not allow space for SBus handles, remove the handle(s)
from your RASTERFLEX card.

5. Install the backplate end of the RASTERFLEX card first, lining up the tabs in the
slots of the chassis (1), as illustrated in the following figure. If you removed the
backplate adapter in the previous step, simply insert the backplate into the
chassis.

Figure 3.5. Install backplate end of the card first.

6. Rotate the card down. Use extra care when plugging in the SBus connectors (2),
since the connector pins can be bent. Plug in the connectors.

7. Make sure the connector is firmly seated.

8. Install the dummy backplates into any unused slots to ensure proper airflow and
ElectroMagnetic Interference (EMI) protection. If you are replacing a two-slot
SBus card with the RASTERFLEX, you may need to obtain an additional dummy
backplate for this purpose.

9. Install any needed retaining hardware.

Adapter

Backplate

11

22

TABS

USER’S GUIDE
RASTERFLEX

Release 4.563.

3.7. REPLACING THE WORKSTATION COVER

Install the cover according to the instructions in your Installation Guide.

3.8. CONNECTING THE MONITOR

By this time, you have one of two possible configurations:

• Either you have removed an existing Sun color framebuffer from your system
altogether, replacing it with the RASTERFLEX card, or

• You are adding the RASTERFLEX card to your workstation configuration.

The following procedures describe how to set up your monitor for each of these
possibilities.

3.8.1. WHEN REPLACING YOUR SUN FRAMEBUFFER

If you are replacing an existing Sun color framebuffer, the Sun video cable can be plugged
directly into the RASTERFLEX card.

1. Connect the Sun video cable to the RASTERFLEX card connector.

2. Tighten the jackscrews finger-tight.

Figure 3.6. Connect the video cable to the RASTERFLEX.

3.8.2. WHEN KEEPING THE SUN FRAMEBUFFER

If you are keeping the Sun framebuffer and adding the RASTERFLEX card with an
additional monitor, be certain that the monitor and cable are compatible with the
RASTERFLEX card. Refer to Appendix B for information on RASTERFLEX video formats.
The RASTERFLEX video connector is a 13W3 coaxial D-shell connector compatible with
Sun framebuffers and cabling.

INSTALLING YOUR RASTERFLEX HARDWARE
TURN ON POWER

July 10, 1996 73.

3.8.2.1. MONITOR WITH BNC CONNECTORS

If the monitor has four BNC connectors, you need a 13W3-to-4BNC video cable,
illustrated in the following figure. Connectware supplies this type of cable with the
optional color monitor.

Figure 3.7. 13W3-to-4BNC cable for BNC connector monitor.

1. Connect the 13W3 connector to the RASTERFLEX and tighten the jackscrews
finger-tight.

2. Connect the four BNCs to the Red, Green, Blue and Sync connectors on the
monitor. The BNC connectors are color-coded (Red, Green, Blue) and a fourth
for Sync.

3.8.2.2. MONITOR WITH 13W3 COAXIAL D-SHELL CONNECTOR

If the monitor has a 13W3 coaxial D-shell connector, you need a 13W3-to-13W3 video
cable, as illustrated in the following figure. This is the same cable that Sun supplies with
its color systems.

Figure 3.8. 13W3-to-13W3 cable for D-shell connector monitor.

1. Connect either end of the video cable to the RASTERFLEX card, and the other end
to the monitor.

2. Tighten the jackscrews finger-tight at both ends.

3.9. TURN ON POWER

You may now turn on power to your SPARCstation.

3.10. PERFORM A RECONFIGURATION BOOT

For Solaris 2, it is necessary to perform a reconfiguration boot the first time you boot your
system after installing a new hardware device. To specify that a reconfiguration boot
should be performed, simply add the “-r” flag to the normal boot command.

USER’S GUIDE
RASTERFLEX

Release 4.583.

For example, from the system boot prompt type:

> b -r

or, from the Forth monitor type:

ok% boot -r

July 10, 1996 14.

4. INSTALLING YOUR RASTERFLEX SOFTWARE

This section provides a brief overview of the RASTERFLEX software environment,
prerequisites for installing the software, and instructions on performing the software
installation and configuration. For advanced users, additional details are provided in the
sections describing the X11R5, X11/NeWS, and Loadable DDX windowing
environments.

4.1. WHAT YOU WILL NEED

In order to install the RasterFLEX software release, you will need the following:

• Access to a standard Sun CD-ROM drive. This drive can be connected directly
to your workstation, or to a remote machine on the network.

• The name of the machine that the drive is on (if it is on a remote machine) and
the name of the drive (typically sr0).

• You will also need superuser privileges, that is, you need to be able to log in as
“root”.

• Also check to see that you have adequate free disk space before attempting the
installation. Refer to the section on RELEASE SPACE DISK REQUIREMENTS
in the release notes supplied with your software for information on the size of
each software component.

4.2. SOFTWARE OVERVIEW

The RASTERFLEX software environment contains a device driver and three different
windowing systems: X11 Release 5, X11/NeWS, and Loadable DDX.

• The device driver provides system-level support for accessing and controlling the
RASTERFLEX framebuffers.

• The X11 Window System environment includes an X Window System™ server
which uses the unique features of the RASTERFLEX framebuffers along with the
set of standard clients, demos, and libraries which are distributed as part of X11
Release 5 from the X Consortium.

• The X11/NeWS environment includes an X11/NeWS server supporting the
RASTERFLEX devices for use with OpenWindows 3,0, 3.1, or 3.2.

• The Loadable DDX environment includes a Loadable DDX object module
supporting the RASTERFLEX devices for use with OpenWindows 3.3.

A single version of each software component (device driver, window system servers, etc.)
supports all RASTERFLEX hardware types: RASTERFLEX-24, RASTERFLEX-32, and
RASTERFLEX-HR. Separate versions are required for support of SunOS 4.1.X and Solaris
2.X.

USER’S GUIDE
RASTERFLEX

Release 4.524.

The following table indicates which software items are supported under the various
SunOS releases:

4.2.1. SOFTWARE REQUIREMENTS

The RASTERFLEX software environment requires that SunOS 4.1.X or Solaris 2.X or later
is installed on the host SPARCstation. In order to run the X11/NeWS Environment for
Solaris 1.X (SunOS 4.1.X) on the RASTERFLEX framebuffers, the standard OpenWindows
3.0, 3.1, or 3.2 release from SunSoft must also be installed before the RASTERFLEX X11/
NeWS software is installed. In order to run the Loadable DDX Environment, the standard
OpenWindows 3.3 (or higher) release must be installed on the system.

4.2.2. THE DEVICE DRIVER

The RASTERFLEX software release contains a device driver which manages the
RASTERFLEX device. This device driver assists in maintaining console integrity when the
RASTERFLEX device is being used as the system console and also provides low-level
support for the RASTERFLEX window system environments.

The RASTERFLEX device driver is loaded automatically at system boot time once it has
been installed on the system. If installed correctly, the following message should appear
on the system console during the boot sequence under SunOS 4.1.X:

VITec, RasterFLEX0 at SBus slot N 0x0 pri 7

For Solaris 2, this message will appears as follows:
VITec, RasterFLEX-320 at sbus0: SBus slot N 0x0 SBus level 5

sparc ipl 9

In addition, device nodes with the appropriate major device number for the loaded driver
are created automatically in the /dev directory for each RASTERFLEX device which is
installed on the system. If installed, these device nodes are named /dev/rfx0, /dev/
rfx1, and so on.

Table 4.1. RASTERFLEX Operating System Support

Item Solaris 1 Solaris 2

Device Driver All All

X11R5 Environment All All

X11/NeWS Environment All None

Loadable DDX Environment None SunOS 5.3
SunOS 5.4
SunOS 5.5

INSTALLING YOUR RASTERFLEX SOFTWARE
SOFTWARE OVERVIEW

July 10, 1996 34.

The interfaces to the RASTERFLEX device driver are not public. These devices should not
be opened directly by any software other than the RASTERFLEX window system software
supplied by Connectware.

4.2.3. THE X11R5 WINDOWING ENVIRONMENT

The RASTERFLEX software release contains a full X11 Release 5 windowing environment
including a server, clients, demos, and libraries.

The clients, demos, and libraries provided on the release tape include the standard set of
X software, as distributed within X11 Release 5 from the X Consortium. All official X
Consortium patches for X11 Release 5 have been applied. This software is supplied “as is”
for the convenience of RASTERFLEX users who do not have access to the X release from
other sources and is not directly supported by Connectware.

The X Window System server (Xrfx) provided with the software release is a specially
modified version of the X11 Release 5 Sample Server which has been enhanced to support
the unique display capabilities of the RASTERFLEX hardware. Additionally, this server
supports the standard Sun monochrome and 8-bit color framebuffers which are supported
by the original X11 release in combination with the RASTERFLEX hardware in a multi-
screen environment. The Xrfx server is a Connectware-supported software component.
Refer to the section on the RASTERFLEX X11R5 WINDOWING ENVIRONMENT for more
details.

4.2.4. THE X11/NeWS ENVIRONMENT

The RASTERFLEX software release contains an X11/NeWS server (xnews-rfx) for
Solaris 1.X (SunOS 4.1.X) based upon Sun’s OpenWindows 3. This server is based upon
the standard xnews server distributed by Sun Microsystems as part of OpenWindows 3.0,
3.1, and 3.2, but has been enhanced to support the unique capabilities of the RASTERFLEX

hardware. The clients and libraries provided with OpenWindows 3 can be used in
conjunction with the RASTERFLEX X11/NeWS server.

The RASTERFLEX X11/NeWS server does not run in SunView compatibility mode, that is,
SunView applications cannot be run concurrently with the OpenWindows environment.
Refer to the section on the RASTERFLEX X11/NEWS ENVIRONMENT for more details.

4.2.5. THE LOADABLE DDX ENVIRONMENT

The RASTERFLEX software release contains a loadable DDX module which is fully
compatible with the OpenWindows 3.3 server (or higher). This module is automatically
located and loaded by the standard Xsun server distributed by Sun Microsystems as part
of OpenWindows 3.3 (or higher), and supports the unique capabilities of the RASTERFLEX

hardware. The clients and libraries provided with OpenWindows 3.3 (or higher) can be
used in conjunction with the RASTERFLEX Loadable DDX Environment. Refer to the
section on the RASTERFLEX LOADABLE DDX ENVIRONMENT for more details.

USER’S GUIDE
RASTERFLEX

Release 4.544.

4.3. INSTALLING THE SOFTWARE

The RASTERFLEX software release is provided on a single CD-ROM which contains all
software elements for both Solaris 1 and Solaris 2. To install the software, the CD-ROM
image is mounted as an ISO 9660 file system and a special script called rfxinstall is used
to initiate installation. This script will determine which software may be loaded based
upon the operating system being run and will prompt the user to select which portions of
the release should loaded and the directories into which they should be placed.

To install the software, perform the following steps:

4.3.1. LOG IN AS ROOT.

To install the RASTERFLEX software, you must have superuser privileges on both the target
machine and the machine containing the CD-ROM device if performing a remote
installation. (you must be logged in as “root”).

login: root
Password:your_root_password

4.3.2. INSERT THE RELEASE CD-ROM

Insert the RASTERFLEX CD-ROM (label side up) into the CD-ROM carrier and insert the
carrier into the drive. You must know the machine name (if it is a remote machine) and the
CD-ROM drive name (such as sr0) in order to begin the installation.

4.3.3. MOUNT THE CD-ROM FILESYSTEM

After inserting the RASTERFLEX CD-ROM, you must mount the CD-ROM contents as a
read-only ISO 9660 filesystem on the machine containing the CD-ROM drive. The
following mount commands will do this under Solaris 1 and 2:

Solaris 1 (SunOS 4.1.X):

mount -rt hsfs /dev/sr0 /cdrom

Solaris 2.0 and Solaris 2.1 (SunOS 5.0, 5.1):

mount -o ro -F hsfs /dev/sr0 /cdrom

If you are running Solaris 2.2 or later, the SunOS Volume Management software included
in this release will automatically mount the CD upon insertion into the drive. For this
version, the RASTERFLEX Software Release will be mounted under the directory /cdrom/
rasterflex_software_release_#_# where “#_#” is the software release number.
No further action is necessary to mount the CD-ROM.

4.3.4. EXPORT THE CD-ROM FILESYSTEM (REMOTE)

If you are performing a remote CD-ROM installation, the machine containing the CD-
ROM drive must be set up to allow the CD-ROM filesystem to be exported to a remote
system. The following sections describe how to do this under Solaris 1 and 2:

INSTALLING YOUR RASTERFLEX SOFTWARE
INSTALLING THE SOFTWARE

July 10, 1996 54.

4.3.4.1. Solaris 1 (SunOS 4.1.X):

Under Solaris 1, you must ensure that an entry exists in the file /etc/exports to allow
the CD-ROM file system to be mounted as a read-only filesystem. The entry in the /etc/
exports file should look something like:

/cdrom -ro

Whenever you modify the exports file, you must also run exportfs to notify NFS that
changes have been made:

exportfs -a

4.3.4.2. Solaris 2 (SunOS 5.X):

Under Solaris 2, you may use the share command to indicate that the CD-ROM file
system may be exported as a read-only file system across the network:

share -o ro /cdrom

4.3.5. NFS MOUNT THE CD-ROM FILESYSTEM (REMOTE)

If you are performing a remote installation and you have configured the system containing
the CD-ROM drive to export its filesystem, you may then mount the CD-ROM filesystem
on the machine upon which the RASTERFLEX software release is to be installed. This can
be done using the following mount command (where “remote” is the hostname of the
remote system containing the CD-ROM drive).

mount -r remote:/cdrom /cdrom

4.3.6. EXECUTE THE RFXINSTALL UTILITY

The top-level directory of the RASTERFLEX CD-ROM filesystem contains a shell script
named rfxinstall which will initiate the RASTERFLEX software installation. If you are
running a version of Solaris earlier than Solaris 2.2:

cd /tmp

/cdrom/rfxinstall

If you are running Solaris 2.2 or later:

cd /tmp

/cdrom/cdrom0/rfxinstall

You will be asked to respond to questions regarding whether or not you wish to install
certain portions of the software release, and where you wish to install the software in your
file system.

You will probably want to use all the default answers if you have not previously installed
a RASTERFLEX software release, and you have enough disk space to contain it. Refer to the
next section for detailed information on the various modules which are provided in the
RASTERFLEX software release.

USER’S GUIDE
RASTERFLEX

Release 4.564.

If you are constrained for disk space and already have OpenWindows 3 installed on your
system, selecting the OpenWindows configuration will provide a fully functional window
system environment with the minimal amount of disk space.

Under Solaris 2, you can use the pkginfo command to list the RASTERFLEX software
packages which have been successfully installed on your system. To do this, use the
following command:

pkginfo | grep VIT

4.4. CONFIGURING THE SOFTWARE RELEASE

After completing the software installation, the installation utility will automatically
provide you with the option of executing the Software Configuration Utility. Additionally,
you may run the configuration utility at any time if you have installed additional software
or wish to alter your software configuration. The Software Configuration Utility is a shell
script named rfxconfig.sh which will reside in the directory into which the
RASTERFLEX device driver has been installed (by default, /etc/modules for Solaris 1,
/opt/VITrflex for Solaris 2). The utility may be run by any user (it does not require root
privileges). To start the configuration utility, simply change to the appropriate directory
and execute the script.

Solaris 1 (SunOS 4.1.X):

cd /etc/modules

./rfxconfig.sh

Solaris 2 (SunOS 5.X):

cd /opt/VITrflex

./rfxconfig.sh

The Software Configuration Utility will automatically generate the appropriate
environmental information required to run the X11 Release 5, X11/NeWS, or Loadable
DDX window systems on the RASTERFLEX accelerators. The information generated by the
utility consists of an initialization file named .cshrc.flex which can be sourced from
within an individual user’s .cshrc file. The .cshrc.flex file will contain the
appropriate setting of the PATH, LD_LIBRARY_PATH, MANPATH, SERVER and other
environment variables based upon the locations into which the RASTERFLEX software
release has been installed.

The Software Configuration utility will first scan the system to determine the locations
where RASTERFLEX software modules have been loaded onto the system and the
directories within which they reside. If the utility detects any problems with your software
configuration, it will display an error message along with the corrective action you should
take. The utility will interactively prompt you to determine how you would like to have
your user environment configured. Once all questions have been answered, the
.cshrc.flex file will be generated. The new configuration information can be
incorporated into any login environment by adding the following line to the end of the
.cshrc file in each RASTERFLEX user’s home directory:

INSTALLING YOUR RASTERFLEX SOFTWARE
CONTENTS OF THE SOLARIS 1 (SUNOS 4.1.X) RELEASE

July 10, 1996 74.

source {directory-name}/.cshrc.flex

After modifying the appropriate .cshrc file, log off the system and log in again. You
should now be able to start up the window system environment on the RASTERFLEX

accelerator by simply typing xinit or openwin.

4.5. CONTENTS OF THE SOLARIS 1 (SUNOS 4.1.X) RELEASE

This subsection and following subsections are organized around the list of components
provided in the Solaris 1 version of the RASTERFLEX Software Release providing a quick
way to find information about a particular piece of software.

4.5.1. DEVICE DRIVER

The Device Driver is a required software component. The installation utility will
automatically install the device driver during software installation if the RASTERFLEX

hardware has already been installed within your system. These files must be placed in
/etc/modules.

rfx.o RASTERFLEX loadable device driver

rfx.sh Device driver installation script

rfxconfig.sh RASTERFLEX Software Configuration Utility

4.5.2. OPENWINDOWS 3.0 X11/NEWS SERVER

The RASTERFLEX X11/NeWS Server is a required software component if you intend to
run the OpenWindows 3.0 X11/NeWS Window System on the RASTERFLEX hardware.
The default location for these files is /usr/openwin.

./bin/xnews-rfx RASTERFLEX OpenWindows 3.0 X11/NeWS server

./bin/vset RASTERFLEX Visual Selection utility

4.5.3. OPENWINDOWS 3.0 MANUAL PAGES

The OpenWindows 3.0 manual pages consists of manual pages which describe additional
unique capabilities of the RASTERFLEX OpenWindows software environment. This
component is optional. The default location for this file is /usr/openwin.

./man/man1/xnews-rfx.1 Manual page for RASTERFLEX X11/NeWS server.

./man/man1/vset.1 Manual page for RASTERFLEX Visual Selection utility

4.5.4. X11R5 SERVER

The RASTERFLEX X Server is a required software component if you intend to run the X11
Release 5 Window System on the RASTERFLEX hardware. The default location for these
files is /usr/X11R5.

./bin/Xrfx RASTERFLEX X11R5 server

USER’S GUIDE
RASTERFLEX

Release 4.584.

./bin/X Symbolic link to Xrfx

./bin/constype Program to display sun console type

./bin/kbd_mode Set console keyboard mode

./bin/showrgb Display contents of RGB database

./lib/rgb.dir DBM file for RGB database

./lib/rgb.pag DBM file for RGB database

./lib/rgb.txt Textual version of RGB database

4.5.5. X11R5 FONTS

The Fonts component provides font utilities and font data files used by the RASTERFLEX

X server. The RASTERFLEX X Server uses the Portable Compiled Format (PCF) font file
format which was included in X11 Release 5. The RASTERFLEX X11R5 Server will also
support the Server Natural Format (SNF) font file format used in X11 Release 4 and earlier
releases. The RASTERFLEX X11R5 Server does not support the OpenWindows font format.
You will be required to load this component unless you have already installed PCF fonts
from the MIT X Release. The default location for these files is /usr/X11R5.

./bin/bdftopcf BDF to PCF font format converter

./bin/fs X Font Server

./bin/fsinfo X Font Server information utility

./bin/fslsfonts X Font Server font list displayer

./bin/fstobdf BDF font generator

./bin/mkfontdir Generates font directories

./bin/showfont Font display utility

./lib/fonts/100dpi/* 100 dots-per-inch bitmap font files

./lib/fonts/75dpi/* 75 dots-per-inch bitmap font files

./lib/fonts/misc/* Miscellaneous bitmap font files

./lib/fonts/Speedo/* Contributed Speedo scalable font files

./lib/fonts/Type1/* Contributed Type 1 scalable font files

./lib/fonts/PEX/* PEX format font files

4.5.6. X11R5 CLIENTS

The Clients module consists of the set of clients and demonstrations which were included
in the Core distribution for X11 Release 5. This component is optional. If preferred, you
may use the X clients which are included in the standard OpenWindows 3.0 release from
SunSoft (if it has been installed on your system). The default location for these files is
/usr/X11R5.

./bin/* X11 Release 5 Core clients/demos (xterm, xinit, etc)

INSTALLING YOUR RASTERFLEX SOFTWARE
CONTENTS OF THE SOLARIS 1 (SUNOS 4.1.X) RELEASE

July 10, 1996 94.

./include/X11/bitmaps/* Bitmap files used by X11R5 clients

./lib/X11/app-defaults/* Application default files for Core clients/demos

./lib/X11/twm/* Default twm window manager configuration files

./lib/X11/xman.help xman help file

./lib/X11/images/rfx.ppm PPM format image file for RASTERFLEX signature image

4.5.7. X11R5 DEVELOPMENT ENVIRONMENT

The Development Environment module consists of the set of include files and libraries
which were included in the Core distribution for X11 Release 5. This component is
optional; however, it is required if you have loaded the Clients module. If preferred, you
may use the X development libraries which are included in the standard OpenWindows
release from Sun (if it has been installed on your system). The default location for these
files is /usr/X11R5.

./bin/imake Imake utility

./include/X11/* Xlib and Xt Intrinsics include files

./include/X11/PEX5/* PEX include files

./include/X11/Xaw/* Athena Widgets include files

./include/X11/Xmu/* Miscellaneous utilities include files

./include/X11/bitmaps/* X bitmap files

./include/X11/extensions/* X11R5 extension include files

./include/X11/phigs PHIGS include files

./lib/libPEX5.* PEX 5.0 libraries

./lib/libX11.* Xlib libraries

./lib/libXau.a X Authorization library

./lib/libXaw.* Athena Widgets libraries

./lib/libXdmcp.a X Display Manager library

./lib/libXext.* X Extensions libraries

./lib/libXi.* X Input Extension libraries

./lib/libXmu.* X Miscellaneous Utilities libraries

./lib/libXt.* X Toolkit Intrinsics libraries

./lib/libXtst.* X Test Extension libraries

./lib/libXv.a X Video Extensions library

./lib/liboldX.* X10 Compatibility libraries

./lib/libphigs.a Phigs support library

./lib/X11/XErrorDB X Error Database

USER’S GUIDE
RASTERFLEX

Release 4.5104.

4.5.8. X11R5 MANUAL PAGES

The Manual Pages module consists of the set of manual pages which were included in the
Core distribution for X11 Release 5. This component is optional. The default location for
these files is /usr/X11R5.

./man/man3/* Manual pages for Xlib and Xt Intrinsics functions

./man/mann/* Manual pages for Xrfx server, clients, and demos

4.6. CONTENTS OF THE SOLARIS 2 (SUNOS 5.X) RELEASE

This subsection and following subsections are organized around the list of components
provide in the Solaris 2 version of the RASTERFLEX Software Release providing a quick
way to find information about a particular piece of software.

4.6.1. VITrdrvr - DEVICE DRIVER

The Device Driver is a required software component under Solaris 2. The Software
Installation Utility will automatically install the device driver during software installation
if the RASTERFLEX hardware has already been installed within your system. The default
location for these files is in /opt/VITrflex.

modules/rfx RASTERFLEX loadable device driver for Solaris 2.[012]

modules/rfx_mapdev RASTERFLEX loadable device driver for Solaris 2.3

modules/seg_mapdev Segment driver required for DGA support

rfxconfig.sh RASTERFLEX configuration utility

After installing the device driver module, this package runs a post-installation script which
will automatically select the correct version of the RASTERFLEX device driver and
configure it to be automatically loaded on your system.

4.6.2. VITropwin - X11/NEWS ENVIRONMENT

The RASTERFLEX X11/NeWS Server is a required software component if you intend to
run the OpenWindows 3.1 X11/NeWS Window System on the RASTERFLEX hardware.
The default location for these files is /opt/VITrflex.This package will only be
available when the software installation is being performed on a system running versions
of Solaris 2 prior to Solaris 2.3.

./bin/xnews-rfx RASTERFLEX OpenWindows 3.1 X11/NeWS server

./bin/vset RASTERFLEX Visual Selection utility

./man/man1/xnews-rfx.1 Manual page for RASTERFLEX X11/NeWS server.

./man/man1/vset.1 Manual page for RASTERFLEX Visual Selection utility

After installing the OpenWindows 3.1 environment, this package contains a post-
installation script which will automatically create symbolic links from the SunSoft
OpenWindows 3.1 environment (if it is installed) to the installed RASTERFLEX files.

INSTALLING YOUR RASTERFLEX SOFTWARE
CONTENTS OF THE SOLARIS 2 (SUNOS 5.X) RELEASE

July 10, 1996 114.

NOTE: No files from the original OpenWindows release will be altered in any manner.

4.6.3. VITrfddx - OW LOADABLE DDX ENVIRONMENT

The RASTERFLEX OpenWindows Loadable DDX Environment is a required software
component if you intend to run the OpenWindows 3.3 X Window System on the
RASTERFLEX hardware. The default location for these files is /opt/VITrflex.

./modules/ddxVITrfx.so.1 RASTERFLEX Loadable DDX Object Module

./bin/vset RASTERFLEX Visual Selection utility

./man/man1/vset.1 Manual page for RASTERFLEX Visual Selection utility

After installing the Loadable DDX environment, this package contains a post-installation
script which will automatically create symbolic links from the SunSoft OpenWindows 3.3
environment (if it is installed) to the installed RASTERFLEX files. This package will only
be available when the software installation is being performed on a system running Solaris
2.3 or later.

4.6.4. VITrxserv - X11R5 SERVER

The RASTERFLEX X Server is a required software component if you intend to run the
X11 Release 5 Window System on the RASTERFLEX hardware. The default location for
these files is /opt/VITrflex.

./bin/Xrfx RASTERFLEX X11R5 server

./bin/X Symbolic link to Xrfx

./bin/constype Program to display sun console type

./bin/kbd_mode Set console keyboard mode

./bin/showrgb Display contents of RGB database

./lib/rgb.dir DBM file for RGB database

./lib/rgb.pag DBM file for RGB database

./lib/rgb.txt Textual version of RGB database

4.6.5. VITrxfont - X11R5 FONTS

The Fonts component provides font utilities and font data files used by the RASTERFLEX
X server. The RASTERFLEX X Server uses the Portable Compiled Format (PCF) font file
format which was included in X11 Release 5. The RASTERFLEX X11R5 Server will also
support the Server Natural Format (SNF) font file format used in X11 Release 4 and earlier
releases. The RASTERFLEX X11R5 Server does not support the OpenWindows font
format. You will be required to load this component unless you have already installed PCF
fonts from the MIT X Release. The default location for these files is /opt/VITrflex.

./bin/bdftopcf BDF to PCF font format converter

./bin/fs X Font Server

USER’S GUIDE
RASTERFLEX

Release 4.5124.

./bin/fsinfo X Font Server information utility

./bin/fslsfonts X Font Server font list displayer

./bin/fstobdf BDF font generator

./bin/mkfontdir Generates font directories

./bin/showfont Font display utility

./lib/fonts/100dpi/* 100 dots-per-inch bitmap font files

./lib/fonts/75dpi/* 75 dots-per-inch bitmap font files

./lib/fonts/misc/* Miscellaneous bitmap font files

./lib/fonts/Speedo/* Contributed Speedo scalable font files

./lib/fonts/Type1/* Contributed Type 1 scalable font files

./lib/fonts/PEX/* PEX format font files

4.6.6. VITrxsupt - X11R5 SUPPORT ENVIRONMENT

The support module consists of the set of clients, libraries, and demonstrations which were
included in the Core distribution for X11 Release 5. This component is optional. If
preferred, you may use the X clients which are included in the standard OpenWindows 3.X
release from SunSoft (if it has been installed on your system). The default location for
these files is /opt/VITrflex.

./bin/* X11 Release 5 Core clients/demos (xterm, xinit, etc)

./include/X11/bitmaps/* Bitmap files used by X11R5 clients

./lib/X11/app-defaults/* Application default files for Core clients/demos

./lib/X11/twm/* Default twm window manager configuration files

./lib/X11/xman.help xman help file

./lib/X11/images/rfx.ppm PPM format image file for RASTERFLEX signature image

./bin/imake Imake utility

./include/X11/* Xlib and Xt Intrinsics include files

./include/X11/PEX5/* PEX include files

./include/X11/Xaw/* Athena Widgets include files

./include/X11/Xmu/* Miscellaneous utilities include files

./include/X11/bitmaps/* X bitmap files

./include/X11/extensions/* X11R5 extension include files

./include/X11/phigs PHIGS include files

./lib/libPEX5.* PEX 5.0 libraries

./lib/libX11.* Xlib libraries

./lib/libXau.a X Authorization library

INSTALLING YOUR RASTERFLEX SOFTWARE
CONTENTS OF THE SOLARIS 2 (SUNOS 5.X) RELEASE

July 10, 1996 134.

./lib/libXaw.* Athena Widgets libraries

./lib/libXdmcp.a X Display Manager library

./lib/libXext.* X Extensions libraries

./lib/libXi.* X Input Extension libraries

./lib/libXmu.* X Miscellaneous Utilities libraries

./lib/libXt.* X Toolkit Intrinsics libraries

./lib/libXtst.* X Test Extension libraries

./lib/libXv.a X Video Extensions library

./lib/liboldX.* X10 Compatibility libraries

./lib/libphigs.a Phigs support library

./lib/X11/XErrorDB X Error Database

4.6.7. VITrxman - X11R5 MANUAL PAGES

The Manual Pages package consists of the set of manual pages which were included in the
Core distribution for X11 Release 5. This component is optional. The default location for
these files is /opt/VITrflex.

./man/man3/* Manual pages for Xlib and Xt Intrinsics functions

./man/mann/* Manual pages for Xrfx server, clients, and demos

USER’S GUIDE
RASTERFLEX

Release 4.5144.

July 10, 1996 15.

5. RASTERFLEX X11R5 WINDOWING ENVIRONMENT

The RASTERFLEX X11R5 Windowing Environment consists of an X Window System
server (Xrfx) for the RASTERFLEX cards plus the standard set of clients, libraries,
demonstrations, and manual pages which were included in the core distribution of X11
Release 5 from the X Consortium. This section provides an overview of the components
provided within the RASTERFLEX X11R5 Windowing Environment as well as specific
information on how to use the RASTERFLEX X11R5 server.

5.1. X11R5 SOFTWARE COMPONENTS

This section describes the various software components which are provided with the
X11R5 Window System Environment for the RASTERFLEX framebuffers. Under SunOS
4.1.X, the default location for X11R5 software installation is /usr/X11R5. Under Solaris
2.X, the default location is /opt/VITrflex. Throughout this section, this default location
will be referred to using an environment variable, $X_INSTALL. You may either set this
environment variable to the location into which the X11R5 software has been installed and
enter the commands as shown, or simply substitute the actual installation location for each
instance of $X_INSTALL in this document.

5.1.1. SOFTWARE RELEASE BUTLER

The Software Release Butler is a utility which prompts you with questions regarding the
installation, then performs the installation for you. The questions it asks involve such
things as which portions of the software you wish to install and where you wish to install
them in your file system. The Software Release Butler is invoked automatically when you
use the rfxinstall utility provided on the RASTERFLEX CD-ROM.

5.1.2. SOFTWARE CONFIGURATION MECHANIC

The Software Configuration Mechanic is a utility which will examine the manner in which
you have installed the RASTERFLEX software release on your system, ask you a few basic
configuration questions, and then generate a file containing a set of environment variable
assignments suitable for inclusion in a user .cshrc file. The Software Configuration
Mechanic is a shell script named rfxconfig.sh which by default is stored in /etc/

modules under SunOS 4.1.X, and in /opt/VITrflex under Solaris 2.X. Refer to the
Software Release notes for more specific information on running the Software
Configuration Mechanic.

5.1.3. DEVICE DRIVER

The device driver allows the operating system to communicate with the RASTERFLEX

hardware. It is required in order to run the remainder of the RASTERFLEX software. Refer
to the Software Release notes for more specific information on how to install the device
driver.

USER’S GUIDE
RASTERFLEX

Release 4.525.

5.1.4. SERVER & RGB DATABASE

The X11R5 server is required to run X on the RASTERFLEX card. Connectware has ported
the original X11R5 Sun Sample Server to the RASTERFLEX hardware, making
optimizations to support the special features of the RASTERFLEX device. If you already
have an X11R5 release on your workstation, you may wish to install only this piece of the
X release. The server binary file is loaded into $X_INSTALL/bin and the RGB database
is loaded into $X_INSTALL/lib.

5.1.5. X FONTS

This is a library of fonts used by the X server. Installation of fonts is required for use of
the Connectware X11R5 server unless you already have X11R5 installed on your
workstation. You cannot use the fonts supplied with the OpenWindows release directly
with the X11R5 server. The font files are written to $X_INSTALL/lib/X11/fonts and
various font utilities are stored in $X_INSTALL/bin/.

5.1.6. X CLIENTS

This is a collection of executable X clients and demonstration programs, such as the X
terminal emulator (xterm), clock (xclock), calculator (xcalc) and Tab Window
Manager (twm). These are useful items which you probably want to install unless you
already have an X11R5 release on your system, or you may prefer to use the
OpenWindows clients. The client programs are stored in $X_INSTALL/bin and any
required support files, such as application defaults, are placed in $X_INSTALL/lib/X11.

5.1.7. X DEVELOPMENT ENVIRONMENT

This is a collection of libraries, header files, etc., used by programmers to create and
execute X application programs. Installation of these files is required if you plan to use
the client and/or demo programs included in this release. The RASTERFLEX programming
examples in this document are also among the files in this library. The library files are
placed in $X_INSTALL/lib and include files reside in $X_INSTALL/include.

5.1.8. X MANUAL PAGES

These are the standard manual pages for X11R5, as well as a manual page specific to the
RASTERFLEX X11R5 server. You probably want to install the manual pages even if you
already have X11R5 installed in order to have access to the RASTERFLEX manual pages.
The X manual pages are installed in $X_INSTALL/man/man3 for X libraries and
$X_INSTALL/man/mann for the X server and clients.

5.2. SETTING UP THE USER ENVIRONMENT

This section outlines the changes which may be required to the user environment after
loading the RASTERFLEX software. It may be desirable to add the following commands to

RASTERFLEX X11R5 WINDOWING ENVIRONMENT
SETTING UP THE USER ENVIRONMENT

July 10, 1996 35.

the system .cshrc file or other user start-up files so that these changes will apply to all
users.

IMPORTANT!
Please read this section carefully, particularly if you have elected to load
any portions of the RASTERFLEX software release in locations other than
the ones recommended by the Release Butler.

Note that the RASTERFLEX Software Configuration Mechanic, provided as a part of the
RASTERFLEX software release, performs basic environment setup automatically. This
section is provided for advanced users who wish to customize their environment. The
Configuration Mechanic is (by default) installed in /etc/modules/rfxconfig.sh

under SunOS 4.1.X, and under /opt/VITrflex under Solaris 2.X.

5.2.1. LOCATING SERVER RESOURCES

The RASTERFLEX X11R5 server must be able to locate certain resources in order to
execute properly. If the Server and Fonts components of the RASTERFLEX software release
have been loaded into their standard locations, this happens automatically. If you have
selected a location other than the default into which these files should be loaded, then you
need to explicitly tell the server where they are located via command line options. The
critical resources are the server font directories and the server RGB database.

The standard location for the font directories is in $X_INSTALL/lib/X11/fonts/

misc,$X_INSTALL/lib/X11/fonts/75dpi,$X_INSTALL/lib/X11/fonts/

100dpi. If the font directories are loaded at a different location on your system, you
always need to use the font path (-fp) option when executing the RASTERFLEX server. For
example, if you elected to load the RASTERFLEX software release under the single
directory /usr/rfx, then the following command line option would be required:

... -fp /usr/rfx/lib/X11/fonts/misc,/usr/rfx/lib/X11/fonts/
75dpi,/usr/rfx/lib/X11/fonts/100dpi ...

The single parameter to -fp option is a comma-separated list of font directory names (with
no spaces between directory names).

The standard location for the server RGB database is $X_INSTALL/lib/X11/rgb. This
actually means that there should be two files in the $X_INSTALL/lib/X11 directory:
rgb.pag and rgb.dir. If these files are not at that location, you need to specify their
location via the color database (-co) option when executing the RASTERFLEX server. For
example, if you elected to load the RASTERFLEX software release under the single
directory /usr/rfx, then the following command line option would be required:

... -co /usr/rfx/lib/X11/rgb ...

The single parameter to the -co option is the directory which contains the rgb.dir and
rgb.pag files with the string rgb appended to it.

USER’S GUIDE
RASTERFLEX

Release 4.545.

5.2.2. LOCATING SHARED LIBRARIES

It is necessary to set up a user’s shared library link path to locate the shared libraries
included in this release. This must be done to run any of the client and demo
programs included in the release. To do this, the LD_LIBRARY_PATH environment
variable should be set to point to the location where the libraries have been loaded.
For example, if the RASTERFLEX software release was loaded under the single
directory /usr/X11R5, the following command would be used:

setenv LD_LIBRARY_PATH /usr/X11R5/lib:$LD_LIBRARY_PATH

5.2.3. SETTING THE PATH VARIABLE

The location of the RASTERFLEX clients and demos should be added to the execution
search path for all users who wish to use them. For a default installation, the following
commands add the appropriate directory to the PATH environment variable:

setenv PATH $X_INSTALL/bin:$PATH

rehash

If the RASTERFLEX software release was loaded under the single directory /usr/rfx, the
following commands could be used:

setenv PATH /usr/rfx/bin:$PATH
rehash

5.2.4. LOCATING MANUAL PAGES

It is necessary to add the location of these pages to the MANPATH environment variable in
order for them to be located properly. For example, if the entire RASTERFLEX software
release was loaded under the directory /usr/X11R5, the following command could be
used:

setenv MANPATH /usr/X11R5/man:$MANPATH

After this, the man command is able to locate the RASTERFLEX manual pages.

5.2.5. SETTING UP APPLICATION DEFAULTS

Many of the clients and demos included in the RASTERFLEX software release have X
Application Defaults files which specify the default settings for application resources. The
standard locations for these files is in the directory $X_INSTALL/lib/X11/app-

defaults. If you did not load the RASTERFLEX software release in the standard locations,
you need to set the XAPPLRESDIR environment variable to point to the directory in which
these files reside. For example, if you elected to load the entire software release under the
directory /usr/rfx, the following command could be used for this purpose:

setenv XAPPLRESDIR /usr/rfx/lib/X11/app-defaults

RASTERFLEX X11R5 WINDOWING ENVIRONMENT
THE RASTERFLEX X11R5 SERVER (Xrfx)

July 10, 1996 55.

5.3. THE RASTERFLEX X11R5 SERVER (Xrfx)

The following sections describe the features of the X Window System server (Xrfx) for
the RASTERFLEX cards. The RASTERFLEX software release includes an X Window
System server that supports the MIT X Consortium’s X11R5 implementation of the
windowing system on your SPARCstation. The Xrfx server has been enhanced to utilize
the unique hardware acceleration and display capabilities of the RASTERFLEX hardware.

The Xrfx server uses the unique acceleration and display features of the RASTERFLEX

hardware transparently. As a result, the application can take advantage of these features
without having to be modified. An application can simply use standard Xlib graphics
primitives, and these operations are automatically accelerated by the hardware, if
applicable.

Other capabilities, such as the use of overlays and shared memory image and pixmap
operations, require explicit selection by the application. Examples of using these
capabilities within a simple X program are provided in the section on RASTERFLEX
ADVANCED FEATURES.

The Xrfx server supports all RASTERFLEX framebuffers: the RASTERFLEX-24, the
RASTERFLEX-32, and the RASTERFLEX-HR. Additionally, the Xrfx server supports the
standard Sun framebuffers which were supported in the original X11R5 Sun Sample
Server (the CG3, CG4, CG6/GX, and BW2).

5.3.1. INVOKING THE X11R5 SERVER

This section describes how to invoke the Connectware Xrfx server for the RASTERFLEX

card. It includes certain requirements that must be satisfied, as well as several methods of
invoking the X server on the host system, including

• using the X initializer (xinit),

• using the X display manager (xdm), and

• using the Sun openwin start-up script.

5.3.1.1. REQUIRED CONDITIONS

Before attempting to invoke the X11 Server, the following conditions must be satisfied:

• You must have a set of valid fonts loaded on the host system. By default, these
fonts are loaded in the directories $X_INSTALL/lib/X11/fonts/100dpi, /
$X_INSTALL/lib/X11/fonts/75dpi, and $X_INSTALL/lib/X11/fonts/
misc. If they are installed in another location, you must use the -fp font path
option when starting the server.

• You must have a valid RGB database loaded on the host system. The RGB
database consists of the two files rgb.dir and rgb.pag, which allow the X
server to map logical color names (such as “violet”) to an associated Red/Green/
Blue triplet. The default location for these files is $X_INSTALL/lib/X11. If they

USER’S GUIDE
RASTERFLEX

Release 4.565.

are installed in another location, you must use the -co color database option
when starting the server.

• You may not be running Sunview or any other windowing environment while
running the Xrfx Server. Because the X server requires dedicated use of the host
input devices, the X server should be invoked only when the system console is in
raw console mode.

• You should have the location where the Connectware X11 binary files are stored
($X_INSTALL/bin/ by default) in your search path.

5.3.1.2. USING XINIT - THE X SYSTEM INITIALIZER

The X Window System Initializer (xinit) allows you to customize your environment for
invoking the X server and to bring up several initial X clients.

The xinit command program starts the X Window System server and a first client
program (usually a terminal emulator or window manager). When the first client program
exits, xinit kills the X server and then terminates.

5.3.1.3. COMMAND FORMAT

The basic format of the xinit command is:
xinit [[client]options][--[server] [display] options]

5.3.1.4. EXAMPLE COMMAND LINE

A simple example of using xinit is illustrated in the following command line:
xinit $X_INSTALL/bin/xterm -- $X_INSTALL/bin/Xrfx

This command line starts up the Connectware RASTERFLEX X11 server executable, then
brings up the xterm terminal emulator client. Then the system user can bring up other
client applications using the terminal emulator. When finished using the window system,
the user can exit from the emulator window by logging out, and the server is shut down
also, since xinit assumes that the user session has ended when control is returned from
the client program or the .xinitrc script (see below).

If no specific client is specified on the command line, xinit looks for a file called
.xinitrc in the user’s home directory. This file usually is a shell script containing a series
of command and client programs to execute at window system start-up.

5.3.1.5. EXAMPLE .xinitrc FILE

An example .xinitrc file follows:

#! /bin/csh

#! Sample client initialization script

xclock &

xterm &

twm

RASTERFLEX X11R5 WINDOWING ENVIRONMENT
THE RASTERFLEX X11R5 SERVER (Xrfx)

July 10, 1996 75.

This script starts up the X clock program, a terminal emulator window, and the Tab
Window Manager, starting all commands — except the final one — in background mode.
As a result, the shell script is not exited from until the twm program stops executing. When
the user exits from the window manager (using an Exit option from a root menu), the
window system shuts down automatically.

Always place the client from which you exit the window system — usually a terminal
emulator window or window manager — as the final command in your xinit client
initialization file and ensure that the process is not started as a background job.

If you do not specify a client program on the command line and a .xinitrc file does not
exist, then xinit uses the default command:

xterm -geometry +1+1 -n login -display :0

If you do not specify a server program on the command line, then xinit looks for a file,
called .xserverrc, in the user’s home directory. It runs this file as a shell script to start
up the server.

5.3.1.6. EXAMPLE SERVER INITIALIZATION FILE

An example server initialization file for the Connectware X11 server follows:

#! /bin/csh

#! Server initialization shell script

$X_INSTALL/bin/Xrfx

This simple script starts the Connectware RASTERFLEX X11 server.

If you do not specify a server command on the command line and you do not specify that
a .xserverrc file does not exist, then xinit uses the following command to start the X
server:

X :0

The X Window System initializer, xinit, provides a simple, yet flexible, means for
invoking the window system server and a set of client applications.

5.3.1.7. USING OPENWIN - THE OPENWINDOWS START-UP SCRIPT

The openwin script which is provided as part of the OpenWindows software release from
SunSoft can also be used to invoke the RASTERFLEX X server. This is done by setting the
SERVER environment variable to a string which should be used to initiate the Xrfx server.
For example, if the server and libraries were stored in the default locations, the following
sequence could be used:

setenv SERVER “$X_INSTALL/bin/Xrfx”
openwin

If any additional command line options are passed to the Xrfx server, they could be
included (inside the double quotes) within the definition of the SERVER variable.

USER’S GUIDE
RASTERFLEX

Release 4.585.

When starting the server using the openwin script, the following message may appear:

svenv: can‘t get SunView environment information

This is due to the fact that the Xrfx server does not support running SunView applications
concurrently with the X Window System environment. This message can be ignored with
no adverse effects.

5.3.1.8. USING XDM - THE X DISPLAY MANAGER

The X Display Manager (xdm) program manages a collection of X displays. It is designed
to provide services similar to those provided by init, getty, and login on character
terminals:

• Prompting for login/password,

• Authenticating the user, and

• Running a ‘session’.

The X Display Manager starts up the X server which is under its control, and displays a
login / password prompt. No other client application can connect to the server when the
login prompt is displayed.

After you successfully login, the server initiates a session, which may be a terminal
emulator, a window manager, or some application-specific program that the user is
running. Once the session is over, and the user exits from the terminal emulator, window
manager, or program, the X display manager resets the X server and redisplays the login /
password prompt.

For complete information and options on configuring the X Display Manager, refer to the
xdm manual page.

5.3.2. X11R5 (Xrfx) SERVER OPTIONS

The following is a summary of all command line options available when invoking the
Xrfx Server:

-a n Set pointer acceleration.
The pointer acceleration value allows the pointer (mouse) movements to
be accelerated (multiplied) by some factor if they are larger than some
threshold value. The threshold parameter can be set by the -t option.
The default acceleration value is 4.

-ar1 milliseconds Set auto-repeat initiation time.
The auto-repeat initiation time specifies the number of milliseconds
which a key must remain down before auto-repeat operations are
initiated. The default value is 200 milliseconds. This option currently is
supported only for Sun hosts.

-ar2 milliseconds Set auto-repeat separation time.
The auto-repeat separation time specifies the number of seconds
between key event generation once auto-repeat is initiated. The default

RASTERFLEX X11R5 WINDOWING ENVIRONMENT
THE RASTERFLEX X11R5 SERVER (Xrfx)

July 10, 1996 95.

value is 50 milliseconds. This option currently is supported only for Sun
hosts.

-auth authorization-file Set authorization file.
The authorization file is used to enable per-user access to the X server.
The file contains a collection of records used to authenticate access. The
default behavior is to use host-based authorization.

bc Enable bug compatibility.
The bug compatibility mode allows applications which generate
questionable protocol streams, such as setting undefined bits in a mask
value, to operate without generating a protocol error. Many older X
toolkits and applications require this mode to operate properly. This
mode is set by default.

-broadcast Broadcast for XDMCP.
Refer to the XDM manual pages for more information.

-bs Disable backing store.
Explicitly disables backing store operations on all screens.

-c Disable key click.
Disables key click on the keyboard device. Key click is enabled by
default.

c volume Set key click volume.
Sets the key click volume, if key click is enabled. Valid values are in the
range 0-100. The default value is 0.

-cc class Select default visual class.
Set the default visual class for the server (SELECTING DEFAULT
COLOR CLASS on page 5.14))

-class display-class Set the display class to send in manage.
Refer to the XDM Manual pages for more information.

-co filename Set color database file.
Set path name of the RGB data base which is used to translate color
names to numeric RGB values. The default data base is $X_INSTALL/
lib/X11/rgb. This option is required if the RGB database has not
been installed at this location.

-dd n Set server default depth.
 (See SELECTING DEFAULT WINDOW DEPTH on page 5.14)

-dev filename[:filename] Set framebuffer device name.
Open the specified file name as the framebuffer. This option can occur
multiple times on the command line, in which case each framebuffer is
registered as a separate screen controlled by the single display created
by running Xrfx. The following types of framebuffers are supported:

USER’S GUIDE
RASTERFLEX

Release 4.5105.

RASTERFLEX-24, RASTERFLEX-32, RASTERFLEX-HR, Sun CG3, Sun CG4,
Sun CG6 (GX), Sun BW2.

-displayID display-id Set manufacturer display ID for request.
Refer to the XDM manual pages for more information.

-dpi n Set screen dots per inch.
Set the dots-per-inch value that the server reports to applications.

-fc string Set cursor font.
Set the name of the font to use for “font cursors”

-fn string Set default font name.
Set the name of the font to use when applications do not specify one.

-fp pathname Set default font path.
A comma separated list of directories for font directory files named
fonts.dir. These directory files map logical font names to actual PCF
font files. The default value is: $X_INSTALL/lib/X11/fonts/
misc,$X_INSTALL/lib/X11/fonts/100dpi,$X_INSTALL/lib/
X11/fonts/75dpi. This option is required if the fonts have not
been installed at this location.

-f n Set the bell volume.
Sets bell volume (allowable values 0-7).

-help Print usage summary.
Prints a summary of all command line options.

-I Ignore remaining options.
Ignore all command line options following -I.

-indirect host-name Select host for indirect XDMCP.
Refer to the XDM manual pages for more information.

-ld n Limit server data space to n Kilobytes.

-logo Enable X Logo for Screen Saver.
The logo option turns on the X Window System logo display in the
screen saver. This is the default value.

nologo Disable X Logo for Screen Saver.
The nologo option turns off the X Window System logo display in the
screen saver.

-mincmaps Advertise minimal installed colormaps.
The default is to advertise 255 installed colormaps. The server will
advertise 255 installed colormaps because the RasterFlex hardware can
support an unlimited number of 24-bit TrueColor and 8-bit StaticGray
colormaps. If this option is specified, the server will report the minimal
number of installed colormaps.

-once Terminate server after one session.

-overlay4 Set overlays to 4-bit depth (RFX-32/HR)

RASTERFLEX X11R5 WINDOWING ENVIRONMENT
THE RASTERFLEX X11R5 SERVER (Xrfx)

July 10, 1996 115.

(See 4-BIT OVERLAY MODE on page 5.17) This is the default setting.

-overlay8 Set overlays to 8-bit depth (RFX-32/HR)
(See 8-BIT OVERLAY MODE on page 5.18)

-p minutes Set screen saver cycle time.
The pattern time option allows the screen-saver pattern cycle time to be
explicitly set. The default value is 10 minutes.

-port port-num Set UDP port number to send messages to.

-query host-name Select named host for XDMCP.
See the XDM manual pages for more information.

-r Disable auto repeat.
This option disables auto repeat for the keyboard device.

r Enable auto repeat.
This option enables auto repeat for the keyboard device. This is the
default setting.

-s minutes Set screen saver time-out.
The screen saver time-out option sets the screen saver time-out value in
minutes. If the server input devices are not used for the time-out value,
the screen saver function is initiated, unless it has been explicitly
disabled. A value of 0 disables the screen saver. The default value is 10
minutes.

-screen number Set screen-specific options
This options causes any subsequent screen-specific options (-cc, -dd,
etc) to apply only to the screen specified by number where number will
vary from 1 to the number of available screens.

-su Disable save under support.
This option disables support for save under operations on all screens.

-sunsupport Support standard Sun framebuffers.
This option specifies that the server should also open and use any of the
standard Sun framebuffers which it is capable of supporting.

-t n Set pointer acceleration threshold.
The pointer threshold option sets the number of pixels which the pointer
must move in order for pointer acceleration to be enabled. The default
value is 4 pixels.

-to seconds Set connection time-out value.
The connection time-out option sets the maximum number of seconds
which the server will wait to establish a connection with a client program.
The default value is 60 seconds.

-v Sets video-on screen saver preference.
The video-on screen saver option ensures that the screen video is not
blanked when screen saver operations are initiated.

USER’S GUIDE
RASTERFLEX

Release 4.5125.

v Sets video-off screen saver preference.
The video-off screen saver option causes the screen video to be blanked
when screen saver operations are initiated.

-wm Enable backing store on all mapped
windows.

The when-mapped backing store option causes backing store to be
enabled for all mapped windows. Use of this option is not recommended,
as it can result in excessive allocation of host memory resources.

5.3.3. USING MULTIPLE SCREENS

The RASTERFLEX server permits the use of multiple screens/framebuffers controlled by a
single invocation of the server. The server automatically locates each RASTERFLEX device
which is installed and initializes it as a unique screen. Additionally, the RASTERFLEX

server locates and initializes many standard Sun framebuffers when the
-sunsupport command line option is specified.

The following types of devices are supported by the RASTERFLEX:

• RASTERFLEX-24 (/dev/rfxn)

• RASTERFLEX-32 (/dev/rfxn)

• RASTERFLEX-HR (/dev/rfxn)

• Sun CG3 (/dev/cgthreen)

• Sun CG4 (/dev/cgfourn)

• Sun CG6 (/dev/cgsixn)

• Sun BW2 (/dev/bwtwon).

To cause the Xrfx server to use a single device, even though multiple devices are present,
the -dev option can be used to select a specific device to run on.

In order to start a client on a specific screen, the DISPLAY environment can be set using
the notation [node]:[server].[screen]. For example, to start a client on screen 1 of
a locally running X server, the DISPLAY variable could be set to “unix:0.1”.

5.3.4. RASTERFLEX COMPATIBILITY ISSUES

X Window System applications should always be able to work with any compliant X
Window System Server. However, many of the unique display capabilities of the
RASTERFLEX-24, RASTERFLEX-32, and RASTERFLEX-HR devices is not anticipated by
many existing applications. This section provides some tips on how to circumvent some
common problems with such applications.

5.3.4.1. VISUAL SELECTION

The X Window System allows a server to advertise the full range of display capabilities
which it is capable of supporting by advertising a set of visuals.

RASTERFLEX X11R5 WINDOWING ENVIRONMENT
THE RASTERFLEX X11R5 SERVER (Xrfx)

July 10, 1996 135.

An X visual is a combination of display depth and color class which define specifically
how an application should view the pixel data which is being manipulated.

For example, an 8-bit PseudoColor visual specifies that there are 8 bits of significant
pixel data and that this data is arbitrarily mapped through a modifiable color Look-Up
Table which maps the 8 bits of data to the displayed red, green, and blue values.

A 24-bit TrueColor visual specifies that there are 24 bits of significant pixel data, and
that the data is further subdivided into three separate channels, one each for red, green, and
blue, and that each channel is mapped through a fixed color lookup operation before
display.

The RASTERFLEX-32 and RASTERFLEX-HR devices are unique in that they advertise a
wide variety of visual classes and depths; whereas most common framebuffers support just
a single depth, but usually multiple classes. The RASTERFLEX-24 device will also support
multiple depths; however, for this device the display depth is selected at server start-up and
only windows of a single depth can be created.

All X Window System servers also define a default visual, which is the visual type from
which the server root window is derived. The compatibility problem which arises is that
many applications simply utilize the default visual without examining the full set of
visuals which are supported by the server to determine the one which is most appropriate
for that application’s purposes. A more sophisticated application might examine the full
set of available visuals and decide to create its windows using the one which best meets
its needs.

The RASTERFLEX-32/HR framebuffers are fully capable of displaying windows of
different visual types on the screen simultaneously; however, the less sophisticated
application will often only utilize the server default. For example, an image display
program may only display data in 8-bit PseudoColor mode (if that is the default) even
though 24-bit TrueColor display capabilities are also available.

To address this issue, the RASTERFLEX server supports command line options in order to
configure the default behavior of the server so as to match the assumed behavior made by
an application program.

This approach, unfortunately, has the following drawbacks:

• The default behavior for one application can be completely inappropriate for
another application — in fact it can cause the other program to not operate at all.
In the latter case, the user must stop and restart the server in order to use the
second application.

• The default behavior can entail large inefficiencies for other applications,
lowering their performance or visual appeal. An example of this would be
running an application which uses a small number of distinct colors in 24-bit
mode.

• The user must explore internal details of each application and experiment with
server configurations until it works.

USER’S GUIDE
RASTERFLEX

Release 4.5145.

For the RASTERFLEX-32 and RASTERFLEX-HR cards, the server defaults to a common, 8-
bit PseudoColor configuration. Most recent color applications work in this mode. For the
RASTERFLEX-24 card, the server defaults to a 24-bit TrueColor configuration.

5.3.4.2. SELECTING DEFAULT WINDOW DEPTH

The X11R5 server supports both 8- and 24-bit depth windows on the same display for the
RASTERFLEX-32 and RASTERFLEX-HR devices. For the RASTERFLEX-24 device, it will
allow selection of either 8-bit or 24-bit depth for all windows at server start-up.

You may set the default depth for the server (the depth of the background pattern and the
depth of windows created for applications that do not explicitly select a depth) with the
-dd option as follows:

Xrfx -dd 8 [Default for RASTERFLEX-32/HR]

or

Xrfx -dd 24 [Default for RASTERFLEX-24]

5.3.4.3. SELECTING DEFAULT COLOR CLASS

Each window supports one of a number of different color schemes or classes. These
classes are the standard X Window color classes. The RASTERFLEX-32/HR supports color
classes on a window-by-window basis. This provides the following advantages:

• Applications that require a specific color class will work with the RASTERFLEX-
32/HR card.

• Fewer server resources must be shared between applications, which helps reduce
the colormap flashing that sometimes occurs when switching between
applications.

• Applications can choose window depth and color class on a per-window basis
rather than being forced to stick with the server default at all times.

Once again, you can choose the server default with a command line option of -cc:

-cc PseudoColor [The default value for -dd 8]
PseudoColor windows use a color Look-Up Table to convert pixel values
in memory to color intensities on the screen. The RASTERFLEX-32 card
supports PseudoColor for 8- and 4-bit depth color maps.

-cc StaticColor
Similar to PseudoColor above, but the color Look-Up Table cannot be
modified. Instead, a selection of 256 colors spanning the RGB space is
pre-loaded into the Look-Up Table.

-cc StaticGray
The pixel value is interpreted directly as an intensity without going
through a color Look-Up Table. The intensity is applied equally to the
Red, Green and Blue components, creating shades of gray. StaticGray
is supported for 8-bit color maps only.

RASTERFLEX X11R5 WINDOWING ENVIRONMENT
THE RASTERFLEX X11R5 SERVER (Xrfx)

July 10, 1996 155.

-cc GrayScale
This is similar to PseudoColor, except there is only one intensity (applied
equally to Red, Green and Blue as in StaticGray) per entry in the color
Look-Up Table. 8-bit color maps only.

-cc DirectColor
This method is supported for 24-bit windows only. It is like the
PseudoColor class for 8-bit windows, but each of the Red, Green and
Blue components is separately indexed from a part of the 24-bit pixel.

-cc TrueColor [The default value for -dd 24]
In this method, like StaticGray above, there is no Look-Up Table. But
unlike StaticGray, a different intensity is used for each component. The
value is taken from three different parts of the 24-bit pixel.

Xrfx -cc n
The number n is used to specify the color class. The relationship
between the number and the color class is defined in the standard X11
header file X.h.

5.3.5. USING THE VISUAL SELECTION EXTENSION

The RASTERFLEX X11R5 Server supports a special Connectware-developed extension
called the Visual Selection extension which will allow clients which normally utilize the
default visual of the server to be run using any of the available server visual types. The
Visual Selection Extension allows a user to specify that one of the available visuals be
advertised to a client as if the selected visual were actually the server default. For example,
a user could start the server with the default visual type set to 8-bit PseudoColor so that
all standard clients such as terminal windows and other utilities run in this manner, then
use the Visual Selection extension to cause a raster display application to be run as if the
server default was set to 24-bit TrueColor.

The Visual Selection Extension is accessed via a special client called vset which allows
the user to specify the visual which will be advertised to the next client program (after
vset) which connects to the RASTERFLEX server. The parameters to vset are:

vset <visual id>

or

vset <visual class> [visual depth]

where <visualid> refers to the specific id of the visual to be advertised as the server default
or <visual class> is one of the valid X visual classes (PseudoColor, TrueColor,
StaticGray, etc.) and <visual depth> is a numeric value representing the desired visual
depth. For example, to start an application named appl so that it believes the server
default visual type is 24-bit TrueColor, the following sequence would be used:

vset TrueColor 24

appl

USER’S GUIDE
RASTERFLEX

Release 4.5165.

Immediately after the appl client is started, the default visual type advertised by the server
will revert to the true server default (as specified at start-up via the command line options
described above).

The Visual Selection Extension does not modify the server default visual, nor does it
change any of the attributes of the root window (which always will be of the true server
default visual class/depth). For this reason, clients which attempt to perform operations
directly upon the root window with an altered notion of the default visual will not work
properly. Applications which currently fall into this category include window managers
(twm, mwm, olwm) and screen dump utilities (xmag, xwd).

NOTE
The Visual Selection Extension is only a workaround for existing
applications which do not properly select the desired visual type or allow
explicit visual selection by the end-user. Some applications (as noted
above) may not operate properly when using an altered notion of the
default visual via the Visual Selection extension.

5.3.6. OVERLAY MODE SELECTION

The RASTERFLEX X server is also different from most common framebuffers in that it
supports two distinct layers of display hierarchy — a set of overlay planes and a set of
underlay planes.

NOTE
For most existing applications, the existence of overlay planes is of no
concern and the application will run without any problems. However, the
manner in which the overlay planes are configured (see below) can have
an impact on the manner in which colormaps and other resources are
utilized, so users may benefit from an understanding of these issues.
For application developers who do want to take advantage of the overlay
capabilities of the RASTERFLEX hardware, a programmatic example is
provided in a subsequent section.

The framebuffer within the RASTERFLEX-32 and RASTERFLEX-HR devices actually
contains 32 bits of data for each displayed pixel. The most significant 8 bits of the 32 bits
of pixel data constitute the overlay plane while the remaining 24 bits are used as the
underlay plane to display either 8 or 24-bit data. Windows can be created in either the
underlay planes or the overlay planes, both never both. The decision about which planes a
window resides in is strictly a function of the visual type with which the window has been
created (more on this later).

RASTERFLEX X11R5 WINDOWING ENVIRONMENT
THE RASTERFLEX X11R5 SERVER (Xrfx)

July 10, 1996 175.

Figure 5.1. Hardware pixel format.

Overlay windows are regular windows with the added feature of transparency on a pixel-
by-pixel basis. The term “overlay” is used since generally one wishes the transparent
window to be on top of some other window, referred to as the “underlay”. Drawing into
the overlay window does not destroy data in the underlay.

The 8-bit overlay within the RASTERFLEX-32/HR can be configured in one of two
manners: 4-bit Overlay Mode or 8-bit Overlay Mode. The mode used is selected at server
start-up via the -overlay4 and -overlay8 command line options to Xrfx. If neither
option is specified, the default behavior is to advertise 4-bit overlay capabilities.

5.3.6.1. 4-BIT OVERLAY MODE

In 4-bit Overlay Mode, the 8-bit overlay pixel is actually broken into three separate
components:

• a 4-bit color value (hence the name),

• a 1-bit transparency control bit, and

• 3 bits of control information.

Figure 5.2. Hardware pixel format — 4-bit overlay model.

The four bits of color value in the 4 least significant bits of the overlay allow 16 distinct
overlay colors to be available. The transparency control bit allows the visibility of the
overlay pixel to be controlled on a pixel-by-pixel basis.

If this bit is set, the overlay pixel is transparent, and the contents of the underlay planes
beneath the window become visible. If the bit is clear (initial state), the pixel is considered
opaque, and the displayed color is selected, based upon the mapping of the 4 bits of color

24 23 16 15 8 7 031

LSBMSB

Overlay Blue Green Red

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28

24 bit visual in low 24 bits.
5 bit overlay in bits 24 - 28 (bit 28 is transparency bit).

Window tags in bits 29-31.

RedGreenBlue

USER’S GUIDE
RASTERFLEX

Release 4.5185.

data through the currently installed Look-Up Table for the overlay planes (see Multiple
Look-Up Table Usage below).

NOTE
The transparency of a given pixel can be changed without making any
changes to the four bits of color data by simply toggling the value of the
transparency bit. This enables overlay data to be non-destructively
turned on and off.

In 4-bit Overlay Mode, the data within the underlay planes can be either 8-bit or 24-bit.
The remaining three control bits are used to determine the format of the underlay data
based upon its visual type. The values within the control bits are maintained entirely by
the Xrfx server and are not accessible to application programs.

5.3.6.2. 8-BIT OVERLAY MODE

In 8-bit Overlay Mode, all 8 bits of the overlay pixel are used in determining the displayed
value for the overlay planes. Transparency can still be selected on a pixel-by-pixel basis
in this mode by storing a value of zero (0) within the overlay planes. Two overlay colors
also are reserved for cursor display, leaving a total of 253 colors available for application
usage.

When in 8-bit Overlay Mode, only 24-bit data can be stored within the underlay planes.
This is necessary due to the fact that no control bits are left over for selection of multiple
underlay display formats. Additionally, 8-bit Overlay Mode has implications on the color
Look-Up Table allocation (see below).

5.3.7. MULTIPLE LOOK-UP TABLE MANAGEMENT

The RASTERFLEX-32 and RASTERFLEX-HR framebuffers are different from most common
framebuffers in that they also provide multiple hardware color Look-Up Tables; most
framebuffers only have one.

The RASTERFLEX framebuffers actually support two full 256-entry color Look-Up Tables
plus a 16-entry Look-Up Table. Additionally, they have the capability to display 24-bit
TrueColor or 8-bit StaticGray data without using any Look-Up Table space.

The following paragraphs describe the manner in which these Look-Up Tables are
managed by the Xrfx server.

NOTE
The management of hardware color Look-Up Tables places no
limitations on the number of X Colormaps which can be created. Its only
impact is the manner in which X Colormaps are downloaded to the
hardware as a result of colormap installation requests from a client
application or window manager.

The manner in which the overlay planes have been configured at server start-up has a
major implication on the manner in which colormaps are managed.

RASTERFLEX X11R5 WINDOWING ENVIRONMENT
THE RASTERFLEX X11R5 SERVER (Xrfx)

July 10, 1996 195.

If the server is started in 8-bit Overlay Mode, the colormap handling is relatively fixed.
One 256-entry color palette is reserved for the 8-bit overlay planes, and the other 256-entry
palette is used for the 24-bit underlay planes. The 16-entry Look-Up Table is not utilized.

In 8-bit Overlay Mode, the hardware color Look-Up Tables always contain the most
recently installed X colormap which is associated with a visual of the proper type. One
Look-Up Table contains the most recently installed overlay visual colormap, and the other
always contains the most recently installed underlay visual colormap.

Hardware Look-Up Table management is more complex when using 4-bit overlay mode,
and also significantly more flexible.

In 4-bit Overlay Mode, one of the 256-entry color Look-Up Tables is reserved for the
default colormap which is advertised to all clients. This colormap always remains
installed, meaning that applications which use it are never subjected to colormap flashing.
The intention is that applications which use only a few colors, such as the standard X
clients, are always displayed with their proper colors.

The other 256-entry colormap is available for use by applications which create and install
(or request installation via a window manager) their own colormaps. This is common for
many raster display programs which require a large number of colors to operate. This
hardware color Look-Up Table always contains the most recently installed underlay visual
colormap (other than the default). The 16-entry Look-Up Table is used for the most
recently installed colormap associated with an overlay visual.

As an additional bonus, X colormaps which are associated with either the 24-bit
TrueColor or 8-bit StaticGray visual types are displayed using a special “pass-
through” mode which actually uses no space within the hardware Look-Up Tables. For
these visual types, the actual data within the framebuffer is passed around the color Look-
Up Tables and directly drives the displayed red, green, and blue values.

This effectively means that windows using the default colormap, an application-defined
underlay colormap, an application-defined overlay colormap, and any using 24-bit
TrueColor or 8-bit StaticGray can all be displayed simultaneously in 4-bit overlay
mode with no visual anomalies due to colormap flashing.

USER’S GUIDE
RASTERFLEX

Release 4.5205.

July 10, 1996 16.

6. RASTERFLEX X11/NEWS ENVIRONMENT

The RASTERFLEX X11/NeWS Windowing Environment consists of an X11/NeWS server
(xnews-rfx) for Solaris 1.X (SunOS 4.1.X) for the RASTERFLEX framebuffers. This
server is fully compatible with OpenWindows 3 from SunSoft and provides additional
support for the unique capabilities of the RASTERFLEX hardware. This section provides an
overview of the software components provided within the RASTERFLEX OpenWindows
Environment as well as specific information on how to use the RASTERFLEX X11/NeWS
server.

You must have the OpenWindows 3.0, 3.1, or 3.2 software release from SunSoft already
loaded on your system to use the RASTERFLEX OpenWindows environment. The xnews-
rfx server depends upon font files, postscript initialization information, and other support
items loaded as part of the standard OpenWindows software installation.

Note
This section is intended to be an addendum to the standard
OpenWindows 3 documentation from Sun. Its purpose is to describe only
those features which are unique to the RASTERFLEX OpenWindows
environment. Refer to original documentation and manual pages for
more in-depth information on the OpenWindows environment and the
X11/NeWS server.

6.1. OPENWINDOWS SOFTWARE COMPONENTS

This section describes the various software components that are provided with the
OpenWindows Environment for the RASTERFLEX framebuffers. The RASTERFLEX

OpenWindows software release was intended to be integrated seamlessly with the
standard OpenWindows 3 release from SunSoft and provides only those items which are
different or not supplied in the original release.

Installing the RASTERFLEX software into the standard OpenWindows release tree does not
remove or destroy any portions of the original release, nor does it prevent running the
original X11/NeWS server on hardware other than the RASTERFLEX framebuffers.

6.1.1. SOFTWARE RELEASE BUTLER

The Software Release Butler is a utility which prompts you with questions regarding the
installation, then performs the installation for you. The questions it asks involve such
things as which portions of the software you wish to install and where you wish to install
them in your file system. The Software Release Butler is invoked automatically when you
use the rfxinstall utility provided on the RASTERFLEX software CD-ROM.

6.1.2. SOFTWARE CONFIGURATION MECHANIC

The Software Configuration Mechanic is a utility which will examine the manner in which
you have installed the RASTERFLEX software release on your system, ask you a few basic
configuration questions, and then generate a file containing a set of environment variable

USER’S GUIDE
RASTERFLEX

Release 4.526.

assignments suitable for inclusion in a user .cshrc file. The Software Configuration
Mechanic is a shell script named rfxconfig.sh which by default is stored in /etc/

modules under SunOS 4.1.X. Refer to the Software Release notes for more specific
information on running the Software Configuration Mechanic.

6.1.3. DEVICE DRIVER

The device driver allows the operating system to communicate with the RASTERFLEX

hardware. It is required in order to run the remainder of the RASTERFLEX software. Refer
to the Software Release notes for more specific information on how to install the device
driver.

6.1.4. X11/NEWS SERVER (xnews-rfx)

The xnews-rfx server is required to run the X11/NeWS window environment on the
RASTERFLEX card. Connectware has ported the standard OpenWindows 3 Window
System Server to the RASTERFLEX hardware, making optimizations to support the special
features of the RASTERFLEX. By default, the server software is loaded into /usr/
openwin/bin.

6.1.5. OPENWINDOWS MANUAL PAGES

This is the manual page for the RASTERFLEX X11/NeWS server. By default, the manual
page is installed in /usr/openwin/man.

6.2. SETTING UP THE USER ENVIRONMENT

This section outlines the changes which may be required to the user environment after
loading the RASTERFLEX software. It is preferable to add the following commands to the
system .cshrc file or other user start-up files so that these changes apply to all users.

Note that the RASTERFLEX Software Configuration Mechanic, provided as a part of the
RASTERFLEX software release, performs basic environment setup automatically. This
section is provided for advanced users who wish to customize their environment. The
Configuration Mechanic is (by default) installed in /etc/modules/rfxconfig.sh

under SunOS 4.1.X.

6.2.1. LOCATING SERVER RESOURCES

The RASTERFLEX X11/NeWS server must be able to locate certain resources in order to
execute properly. All resources required by the server are located relative to the top of the
standard OpenWindows 3 release tree, which is identified by the OPENWINHOME
environment variable. For example, if you have loaded OpenWindows 3 under the
directory /usr/openwin [the default], then you would use the following C Shell
command to set the OPENWINHOME variable:

setenv OPENWINHOME /usr/openwin

RASTERFLEX X11/NEWS ENVIRONMENT
THE RASTERFLEX X11/NEWS SERVER

July 10, 1996 36.

6.2.2. LOCATING SHARED LIBRARIES

When running the X11/NeWS server or OpenWindows clients, it is necessary to add the
X11, toolkit and server support shared libraries, which are supplied with the standard
OpenWindows release, to the library search path. To do this, set the LD_LIBRARY_PATH
environment variable to point to the location where the libraries have been loaded. For
example, the following command could be used:

setenv LD_LIBRARY_PATH $OPENWINHOME/lib:$LD_LIBRARY_PATH

6.2.3. SETTING THE PATH VARIABLE

The location of the X11 and NeWS clients and utilities should be added to the execution
search path for all users who wish to use them. For a default installation, use the following
commands to add the appropriate directory to the PATH environment variable:

setenv PATH $OPENWINHOME/bin:$PATH

rehash

6.2.4. LOCATING MANUAL PAGES

If the OpenWindows manual pages have been loaded in a location other than /usr/man,
it is necessary to add the location of these pages to the MANPATH environment variable in
order for them to be located properly. The following command could be used for this
purpose:

setenv MANPATH $OPENWINHOME/man:$MANPATH

After this, the man command is able to locate the OpenWindows manual pages.

6.3. THE RASTERFLEX X11/NEWS SERVER

The following paragraphs describe the features of the X11/NeWS Window System server
(xnews-rfx) for Solaris 1.X (SunOS 4.1.X) for the RASTERFLEX cards. The
RASTERFLEX OpenWindows software release includes a server that supports the
OpenWindows 3 implementation of the X11/NeWS windowing system on your
SPARCstation. The xnews-rfx server has been enhanced to utilize the unique hardware
acceleration and display capabilities of the RASTERFLEX hardware.

The xnews-rfx server uses the unique acceleration and display features of the
RASTERFLEX hardware transparently. As a result, your application can take advantage of
these features without having to be changed. An application can simply use standard Xlib
or NeWS graphics primitives, and these operations, if applicable, are accelerated
automatically by the hardware.

Other capabilities, such as the use of overlays and shared memory image and pixmap
operations, require the application to select them explicitly. Examples of using these
capabilities within a simple X program are provided in a subsequent section.

USER’S GUIDE
RASTERFLEX

Release 4.546.

The xnews-rfx server supports both RASTERFLEX framebuffers: the RASTERFLEX-24,
the RASTERFLEX-32 and the RASTERFLEX-HR. Additionally, the xnews-rfx server
supports many of the standard Sun framebuffers which were supported in the original
OpenWindows 3 release (the CG3, CG4, CG6, CG8, and BW2).

6.4. INVOKING THE X11/NEWS SERVER

This section describes how to invoke the Connectware xnews-rfx server for the
RASTERFLEX card. It includes certain requirements that must be satisfied, as well as
several methods of invoking the X11/NeWS server on the host system, including

• using the Sun openwin start-up script,

• using the X initializer (xinit), and

• using the X display manager (xdm).

6.4.1. REQUIRED CONDITIONS

Before attempting to invoke the RASTERFLEX X11/NeWS Server for Solaris 1.X (SunOS
4.1.X), the following conditions must be satisfied:

• You must already have installed the OpenWindows 3 software release from
SunSoft onto your system. Additionally, you should set the OPENWINHOME
environment variable to point to the top of the OpenWindows 3 release tree.

• You cannot be running Sunview or any other windowing environment while
running the xnews-rfx Server. Because the server requires dedicated use of the
host input devices, the X11/NeWS server should be invoked only when the
system console is in raw console mode.

• You should have the location where the OpenWindows executables are stored
($OPENWINHOME/bin by default) in your search path.

• You should have the location where the OpenWindows shared libraries are stored
($OPENWINHOME/lib by default) in your library load path.

6.4.1.1. USING OPENWIN - THE OPENWINDOWS START-UP SCRIPT

The openwin script, which is provided as part of the OpenWindows software release from
Sun, can be used to invoke the RASTERFLEX X11/NeWS server. This is done by setting the
SERVER environment variable to a string that is used to initiate the xnews-rfx server. For
example, if the server and libraries were stored in the default locations, the following
sequence could be used:

setenv SERVER “/usr/openwin/bin/xnews-rfx”
openwin

If any additional command line options are passed to the xnews-rfx server, they could
be included (inside the double quotes) within the definition of the SERVER variable.

When you use the openwin script to start the server, the following message may appear:
svenv: can‘t get SunView environment information

RASTERFLEX X11/NEWS ENVIRONMENT
INVOKING THE X11/NEWS SERVER

July 10, 1996 56.

This is due to the fact that the xnews-rfx server does not support running SunView
applications concurrently with the X Window System environment. This message can be
ignored with no adverse effects.

6.4.1.2. USING XINIT - THE X SYSTEM INITIALIZER

The X Window System Initializer (xinit) allows you to customize your environment for
invoking the X11/NeWS server and to bring up several initial X clients.

The xinit command program starts the X11/NeWS Window System server and a first
client program (usually a terminal emulator or window manager). When the first client
program exits, xinit kills the server and then terminates.

6.4.1.3. COMMAND FORMAT

The basic format of the xinit command is:
xinit [[client]options][--[server] [display] options]

6.4.1.4. EXAMPLE COMMAND LINE

A simple example of using xinit is illustrated in the following command line:
xinit xterm -- /usr/openwin/bin/xnews-rfx

This command line starts up the Connectware RASTERFLEX X11/NeWS server executable,
then brings up the xterm terminal emulator client. Then you can bring up other client
applications using the terminal emulator. When finished using the window system, you can
exit from the emulator window by logging out, and the server is shut down also, since
xinit assumes that the user session has ended when control is returned from the client
program or the .xinitrc script (see below).

If no specific client is specified on the command line, xinit looks for a file, called
.xinitrc, in the user’s home directory. This file usually is a shell script containing a
series of command and client programs to execute at window system start-up.

6.4.1.5. EXAMPLE .xinitrc FILE

The following is an example .xinitrc file:

#! /bin/csh

#! Sample client initialization script

xclock &

xterm &

olwm

This script starts up the X clock program, a terminal emulator window, and the OpenLook
Window Manager, starting all commands — except the final one — in background mode.
As a result, the shell script is not exited from until the olwm program stops executing.
When you exit from the window manager (using an Exit option from a root menu), the
window system shuts down automatically.

USER’S GUIDE
RASTERFLEX

Release 4.566.

Always place the client from which you exit the window system — usually a terminal
emulator window or window manager — as the final command in your xinit client
initialization file and ensure that it is not started as a background job.

If you do not specify a client program on the command line and a .xinitrc file does not
exist, then xinit uses the default command:

xterm -geometry +1+1 -n login -display :0

If you do not specify a server program on the command line, then xinit looks for a file,
called .xserverrc, in the user’s home directory. It runs this file as a shell script to start
up the server.

6.4.1.6. EXAMPLE SERVER INITIALIZATION FILE

An example server initialization file for the Connectware X11/NeWS server follows:

#! /bin/csh

#! Server initialization shell script

/usr/openwin/bin/xnews-rfx

This simple script starts the Connectware RASTERFLEX X11/NeWS server.

If you do not specify a server command on the command line and you do not specify that
a .xserverrc file does not exist, then xinit uses the following command to start the X
server:

xnews :0

The X Window System initializer, xinit, provides a simple, yet flexible, means for
invoking the window system server and a set of client applications.

6.4.1.7. USING XDM - THE X DISPLAY MANAGER

The X Display Manager (xdm) program manages a collection of X displays. It is designed
to provide services similar to those provided by init, getty, and login on character
terminals:

• Prompting for login/password,

• Authenticating the user, and

• Running a ‘session’.

The X Display Manager starts up the X server, which is under its control, and displays a
login / password prompt. No other client application can connect to the server when the
login prompt is displayed.

After you successfully login, the server initiates a session, which can be a terminal
emulator, a window manager, or some application-specific program that the user is
running. Once the session is over, and the user exits from the terminal emulator, window
manager, or program, the X display manager resets the X server and redisplays the login /
password prompt.

RASTERFLEX X11/NEWS ENVIRONMENT
INVOKING THE X11/NEWS SERVER

July 10, 1996 76.

For complete information and options on configuring the X Display Manager, refer to the
xdm manual pages that are supplied with the Connectware software release.

6.4.2. X11/NEWS (xnews-rfx) SERVER OPTIONS

The basic command syntax when invoking the xnews-rfx server is:

xnews-rfx [serveroptions] [[-dev device] [deviceoptions]] ...

The xnews-rfx server supports two basic types of options: serveroptions and
deviceoptions. The serveroptions are global options that affect the server for all
display screens. The deviceoptions are options that apply only to a specific framebuffer
device which the server is controlling.

6.4.2.1. SERVER OPTIONS

:display Set display number
This options specifies the display number upon which the server listens
for X11 and NeWS connections. The default values is :0.

-auth authorization-file Set authorization file.
The authorization file is used to enable per-user access to the server.
The file contains a collection of records used to authenticate access. The
default behavior is to use host-based authorization.

-cubesize small | large Set static color cube size.
Sets the color cube size for StaticColor colormaps which are defined
by the server.

-escape Allow “hot-key” exit.
Allows the user to forcibly exit the window system server by holding
down the following sequence of keys: L1-Alt-Delete.

-defeateventsecurity Disable synthetic event security.
Tells the server to disable the security feature which detects synthetically
created events. All events distributed by the server, even if created by a
client program, will have a synthetic field of false. Its use is not
recommended, unless running the journaling demo or other applications
which need to generate synthetic events.

-fp pathname Set default font path.
A comma separated list of directories for fonts. These directories must
contain files which map logical font names to actual font files. Directories
that do not contain font databases created by bldfamily(1) will be
ignored. The default font path is $OPENWINHOME/lib/fonts.

-init ‘POSTSCRIPT-code‘ Execute Postscript initialization code.
This option allows the user to specify Postscript code which is to be used
to initialize the server. If unspecified, the default value is:

(NeWS/init.ps) (r) file cvx exec

USER’S GUIDE
RASTERFLEX

Release 4.586.

-nobanner Disable banner display.
Disables display of the OpenWindows banner screen at start-up, slightly
decreasing the amount of time needed to start the server.

-banner Enable banner display.
Enables display of the OpenWindows banner screen at start-up.This is
the default.

-nominexp Disable “minimized exposure” handling.
This option is used to disable “minimized exposure”, which is only used
by multi-planegroup devices such as gt, cg12, cg8, and rfx. “Minimized
Exposure” means that the server does not send expose events to
windows in one planegroup that are exposed by windows in another
planegroup.

-iobuffersize size Set input/output buffer size.
Requests that the size of the network input/output buffers be set to a
specific size. The arguments should be specified in kilobytes. There is no
guarantee that the server can configure the network buffers to the
requested size.

-overlay4 Set overlays to 4-bit depth.
Selects the manner in which the overlay planes are configured for the
RASTERFLEX-32 and RASTERFLEX-HR framebuffers (See 4-BIT
OVERLAY MODE on page 14). This is the default setting.

-overlay8 Set overlays to 8-bit depth.
Selects the manner in which the overlay planes are configured for the
RASTERFLEX-32 and RASTERFLEX-HR framebuffers (See 8-BIT
OVERLAY MODE on page 15)

-nosunview Disable SunView support.
Disables SunView binary compatibility mode.

-sunview Enable SunView support.
Enables SunView binary compatibility mode. The benefits of using this
mode is that SunView libraries and kernel driver are no longer required
to start OpenWindows and the xnews-rfx server will run with less
overhead. Note: This option will only affect the manner in which xnews-
rfx input device events are received. Even in SunView support mode, it
is not possible to run SunView applications on the RASTERFLEX device
while running the X11/NeWS server. SunView support is not available
under Solaris 2.X.

6.4.2.2. DEVICE OPTIONS

-dev framebuffer Set framebuffer display device.
This specifies the framebuffer device which the server should use for
display. If the option is not set, the default is /dev/rfx0. Subsequent
uses of this option indicate multiple display devices (screens) on the
same server. After each -dev option, any of the following modifiers may
be used to change the behavior of the named device.

RASTERFLEX X11/NEWS ENVIRONMENT
INVOKING THE X11/NEWS SERVER

July 10, 1996 96.

grayvis Select gray default visual.
Tells the xnews-rfx server to default to using a GrayScale or
StaticGray visual as the default visual, depending upon the state of
the staticvis device modifier. The default behavior is to use color
visual classes on non-monochrome devices.

staticvis Select static default visual.
Tells the xnews-rfx server to default to using a StaticColor,
StaticGray, or TrueColor visual as the default visual depending
upon the state of the grayvis and defdepth modifiers. The default
behavior is to use dynamic visual classes.

defdepth n Select default visual depth.
Tells the xnews-rfx server to default to using a visual which is of the
given depth as the default visual. The color class of the visual is
dependent upon the values of the grayvis and staticvis modifiers.
The default value (if unspecified) is 8 for the RASTERFLEX-32 and
RASTERFLEX-HR framebuffers, and 24 for RASTERFLEX-24 framebuffers.

left|right|top|bottom Set screen position.
Indicates where the given screen resides in relation to the previous one
given on the command line. The default is to place each subsequent
screen to the right of the previous one.

6.4.3. USING MULTIPLE SCREENS

The RASTERFLEX server permits the use of multiple screens/framebuffers controlled by a
single invocation of the server. The server automatically locates each RASTERFLEX device
which is installed and initializes it as a unique screen. Additionally, the RASTERFLEX

server locates and initializes many standard Sun framebuffers. The screens to use are
specified by providing multiple -dev options to the xnews-rfx server. For example, to
start a dual-screen server using a RASTERFLEX-32 and a Sun BW2 framebuffer, you can
use the following command line:

xnews-rfx -dev /dev/rfx0 -dev /dev/bwtwo0

The following types of devices are supported by the RASTERFLEX X11/NeWS Server:

• RASTERFLEX-24 (/dev/rfxn)

• RASTERFLEX-32 (/dev/rfxn)

• RASTERFLEX-HR (/dev/rfxn)

• Sun CG3 (/dev/cgthreen)

• Sun CG4 (/dev/cgfourn)

• Sun GX (/dev/cgsixn)

• Sun CG8 (/dev/cgeightn)

• Sun BW2 (/dev/bwtwon)

USER’S GUIDE
RASTERFLEX

Release 4.5106.

To cause the xnews-rfx server to use just a single device, even though multiple devices
are present, the -dev option can be used to select a specific device to run on.

In order to start a client on a specific screen, the DISPLAY environment can be set using
the notation [node]:[server].[screen]. For example, to start a client on screen 1 of
a locally running X11/NeWS server, set the DISPLAY variable to “unix:0.1”.

6.4.4. RASTERFLEX COMPATIBILITY ISSUES

X Window System applications should always be able to work with any compliant X
Window System. However, many of the unique display capabilities of the RASTERFLEX-
32 and RASTERFLEX-HR cannot be anticipated by many existing applications. This section
provides some tips on how to circumvent some common problems with such applications.

6.4.4.1. SELECTING A SET OF VISUALS

The X Window System allows a server to advertise the full range of display capabilities
which it is capable of supporting by advertising a set of visuals.

An X visual is a combination of display depth and color class which defines specifically
how an application should view the pixel data that is being manipulated.

For example, an 8-bit PseudoColor visual specifies that there are 8 bits of significant
pixel data and that this data is arbitrarily mapped through a modifiable color Look-Up
Table which maps the 8 bits of data to the displayed red, green, and blue values.

A 24-bit TrueColor visual specifies that there are 24 bits of significant pixel data, and
that the data is further subdivided into three separate channels, one each for red, green, and
blue, and that each channel is mapped through a fixed color look-up operation before
display.

The RASTERFLEX-32 and RASTERFLEX-HR devices are unique in that they advertise a
wide variety of visual classes and depths; whereas, most common framebuffers support
just a single depth, but frequently multiple classes. The RASTERFLEX-24 device will also
support multiple depths; however, for this device the display depth is selected at server
start-up and only windows of a single depth can be created.

All X Window System servers also define a default visual, which is the visual type from
which the server root window is derived. The compatibility problem which arises is that
many applications simply utilize the default visual without examining the full set of
visuals which are supported by the server to determine the one which is most appropriate
for that application’s purposes. A more sophisticated application might examine the full
set of available visuals and decide to create its windows using the one which best meets
its needs.

The RASTERFLEX-32/HR framebuffers are fully capable of displaying windows of
different visual types on the screen simultaneously; however, the less sophisticated
application will only utilize the server default. For example, an image display program

RASTERFLEX X11/NEWS ENVIRONMENT
INVOKING THE X11/NEWS SERVER

July 10, 1996 116.

may only display data in 8-bit PseudoColor mode (if that is the default) even though 24-
bit TrueColor display capabilities are also available.

To address this issue, the RASTERFLEX server supports command line options in order to
configure the default behavior of the server so as to match the assumed behavior made by
an application program.

This approach, unfortunately, has the following drawbacks:

• The default behavior for one application can be completely inappropriate for
another application — in fact, it can cause the other program to not operate at all.
In the latter case, the user must stop and restart the server in order to use the
second application.

• The default behavior can entail large inefficiencies for other applications,
lowering their performance or visual appeal. An example of this would be
running an application which uses a small number of distinct colors in 24-bit
mode.

• The user must explore internal details of each application and experiment with
server configurations until it works.

The server defaults to a common, 8-bit PseudoColor configuration for the RASTERFLEX-
32 and RASTERFLEX-HR. Most recent color applications work in this mode. The default is
24-bit DirectColor for the RASTERFLEX-24.

6.4.4.2. SELECTING DEFAULT WINDOW DEPTH

The RASTERFLEX X11/NeWS server supports both 8- and 24-bit depth windows on the
RASTERFLEX-32 and RASTERFLEX-HR devices. For the RASTERFLEX-24 device, it will
allow selection of either 8-bit or 24-bit depth for all windows at server start-up.

You may set the default depth for the server (the depth of the background pattern and the
depth of windows created for applications that do not explicitly select a depth) with the
defdepth device modifier as follows:

xnews-rfx -dev /dev/rfx0 defdepth 8

or

xnews-rfx -dev /dev/rfx0 defdepth 24

NOTE
By specifying the default depth, you have not precluded the use of
windows using other depths. You have only set the depth that a window
will have if the application does not specify it. Many simple applications
use the server default depth.

6.4.4.3. SELECTING DEFAULT COLOR CLASS

Each window supports one of a number of different color schemes or classes. These
classes are the standard X Window color classes. The RASTERFLEX environment supports
color classes on a window-by-window basis. This provides the following advantages:

USER’S GUIDE
RASTERFLEX

Release 4.5126.

• Applications that require a specific color class will work with the RASTERFLEX

hardware.

• Fewer server resources must be shared between applications, which helps reduce
the colormap flashing that sometimes occurs when switching between
applications.

• Applications can choose window depth and color class on a per-window basis
rather than being forced to stick with the server default at all times.

Once again, you can choose the server default color class through combinations of the
defdepth, staticvis, and grayvis device modifiers. The following table shows how
the default visual is selected based upon the value for these parameters:

A value of “No” for staticvis and grayvis modifiers means that the option is not
specified on the command line. A value of “Ignored” indicates that the modifier has no
effect upon visual selection. The defdepth parameter defaults to 8 if unspecified.

6.4.5. USING THE VISUAL SELECTION EXTENSION

The RASTERFLEX X11/NeWS Server supports a special Connectware-developed
extension called the Visual Selection extension which will allow clients which normally
utilize the default visual of the server to be run using any of the available server visual
types. The Visual Selection Extension allows a user to specify that one of the available
visuals be advertised to a client as if the selected visual were actually the server default.
For example, a user could start the server with the default visual type set to 8-bit
PseudoColor so that all standard clients such as terminal windows and other utilities run
in this manner, then use the Visual Selection extension to cause a raster display application
to be run as if the server default was set to 24-bit TrueColor.

The Visual Selection Extension is accessed via a special client called vset which allows
the user to specify the visual which will be advertised to the next client program (after
vset) which connects to the RASTERFLEX server. The parameters to vset are:

Table 6.1. Default Color Classes

defdepth staticvis grayvis Selected Visual

5 or 8 No No 5/8-bit PseudoColor

5 or 8 No Yes 5/8-bit GrayScale

5 or 8 Yes No 5/8-bit StaticColor

5 or 8 Yes Yes 5/8-bit StaticGray

24 No Ignored 24-bit DirectColor

24 Yes Ignored 24-bit TrueColor

RASTERFLEX X11/NEWS ENVIRONMENT
INVOKING THE X11/NEWS SERVER

July 10, 1996 136.

vset <visual id>

or

vset <visual class> [visual depth]

where <visualid> refers to the specific id of the visual to be advertised as the server default
or <visual class> is one of the valid X visual classes (PseudoColor, TrueColor,
StaticGray, etc.) and <visual depth> is a numeric value representing the desired visual
depth. For example, to start an application named appl so that it believes the server
default visual type is 24-bit TrueColor, the following sequence would be used:

vset TrueColor 24

appl

Immediately after the appl client is started, the default visual type advertised by the server
will revert to the true server default (as specified at start-up via the command line options
described above).

The Visual Selection Extension does not modify the server default visual, nor does it
change any of the attributes of the root window (which always will be of the true server
default visual class/depth). For this reason, clients which attempt to perform operations
directly upon the root window with an altered notion of the default visual will not work
properly. Applications which currently fall into this category include window managers
(twm, mwm, olwm) and screen dump utilities (xmag, xwd).

NOTE
The Visual Selection Extension is only a workaround for existing
applications which do not properly select the desired visual type or allow
explicit visual selection by the end-user. Some applications (as noted
above) may not operate properly when using an altered notion of the
default visual via the Visual Selection extension.

6.4.6. OVERLAY MODE SELECTION

The RASTERFLEX X11/NeWS server is also different from most common framebuffers in
that it supports two distinct layers of display hierarchy — a set of overlay planes and a set
of underlay planes.

NOTE
For most existing applications, the existence of overlay planes is of no
concern and the application will run without any problems. However, the
manner in which the overlay planes are configured (see below) can have
an impact on the manner in which colormaps and other resources are
utilized, so users may benefit from an understanding of these issues. For
application developers who do want to take advantage of the overlay
capabilities of the RASTERFLEX hardware, a programmatic example is
provided in a subsequent section.

The framebuffer within the RASTERFLEX-32 and RASTERFLEX-HR devices actually
contains 32 bits of data for each displayed pixel. The most significant 8 bits of the 32 bits

USER’S GUIDE
RASTERFLEX

Release 4.5146.

of pixel data constitute the overlay plane, while the remaining 24 bits are used as the
underlay plane to display either 8- or 24-bit data. Windows can be created in either the
underlay planes or the overlay planes, but never both. The decision about which planes a
window resides in is strictly a function of the visual type with which the window has been
created (more on this later).

Figure 6.1. Hardware pixel format.

Overlay windows are regular windows with the added feature of transparency on a pixel-
by-pixel basis. The term “overlay” is used since generally one wishes the transparent
window to be on top of some other window, referred to as the “underlay”. Drawing into
the overlay window does not destroy data in the underlay.

The 8-bit overlay within the RASTERFLEX-32/HR can be configured in one of two
manners: 4-bit Overlay Mode or 8-bit Overlay Mode. The mode used is selected at server
start-up via the -overlay4 and -overlay8 command line options to xnews-rfx. If
neither option is specified, the default behavior is to advertise 4-bit overlay capabilities.

6.4.6.1. 4-BIT OVERLAY MODE

In 4-bit Overlay Mode, the 8-bit overlay pixel is actually broken into three separate
components:

• a 4-bit color value (hence the name),

• a 1-bit transparency control bit, and

• 3 bits of control information.

Figure 6.2. Hardware pixel format — 4-bit overlay model.

24 23 16 15 8 7 031

LSBMSB

Overlay Blue Green Red

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28

24 bit visual in low 24 bits.
5 bit overlay in bits 24 - 28 (bit 28 is transparency bit).

Window tags in bits 29-31.

RedGreenBlue

RASTERFLEX X11/NEWS ENVIRONMENT
INVOKING THE X11/NEWS SERVER

July 10, 1996 156.

The four bits of color value in the 4 least significant bits of the overlay allow 16 distinct
overlay colors to be available. The transparency control bit allows the visibility of the
overlay pixel to be controlled on a pixel-by-pixel basis.

If this bit is set, the overlay pixel is transparent, and the contents of the underlay planes
beneath the window become visible. If the bit is clear (initial state), the pixel is considered
opaque, and the displayed color is selected, based upon the mapping of the 4 bits of color
data through the currently installed Look-Up Table for the overlay planes (see USING
MULTIPLE LOOK-UP TABLES below).

NOTE
The transparency of a given pixel can be changed without making any
changes to the four bits of color data by simply toggling the value of the
transparency bit. This enables overlay data to be non-destructively
turned on and off.

In 4-bit Overlay Mode, the data within the underlay planes can be either 8-bit or 24-bit.
The remaining three control bits are used to determine the format of the underlay data
based upon its visual type. The values within the control bits are maintained entirely by
the xnews-rfx server and are not accessible to application programs.

6.4.6.2. 8-BIT OVERLAY MODE

In 8-bit Overlay Mode, all 8 bits of the overlay pixel are used in determining the displayed
value for the overlay planes. Transparency can still be selected on a pixel-by-pixel basis
in this mode by storing a value of zero (0) within the overlay planes. Two overlay colors
also are reserved for cursor display, leaving a total of 253 colors available for application
use.

When in 8-bit Overlay Mode, only 24-bit data can be stored within the underlay planes.
This is necessary due to the fact that no control bits are left over for selection of multiple
underlay display formats. Additionally, 8-bit Overlay Mode has implications on the color
Look-Up Table allocation (see below).

6.4.7. MULTIPLE LOOK-UP TABLE MANAGEMENT

The RASTERFLEX-32 and RASTERFLEX-HR framebuffers are different from most common
framebuffers in that they also provide multiple hardware color Look-Up Tables; most
framebuffers only have one.

The RASTERFLEX framebuffers actually support two full 256-entry color Look-Up Tables
plus a 16-entry Look-Up Table. Additionally, they have the capability to display
TrueColor or StaticGray data without using any Look-Up Table space.

The following paragraphs describe the manner in which these Look-Up Tables are
managed by the xnews-rfx server.

USER’S GUIDE
RASTERFLEX

Release 4.5166.

NOTE
The management of hardware color Look-Up Tables places no
limitations on the number of X Colormaps which can be created. Its only
impact is the manner in which X Colormaps are downloaded to the
hardware as a result of colormap installation requests from a client
application or window manager.

The manner in which the overlay planes have been configured at server start-up has a
major implication on the manner in which colormaps are managed.

If the server is started in 8-bit Overlay Mode, the colormap handling is relatively fixed.
One 256-entry color palette is reserved for the 8-bit overlay planes, and the other 256-entry
palette is used for the 24-bit underlay planes. The 16-entry Look-Up Table is not utilized.

In 8-bit Overlay Mode, the hardware color Look-Up Tables always contain the most
recently installed X colormap which is associated with a visual of the proper type. One
Look-Up Table contains the most recently installed overlay visual colormap, and the other
always contains the most recently installed underlay visual colormap.

Hardware Look-Up Table management is more complex when using 4-bit overlay mode,
and also significantly more flexible.

In 4-bit Overlay Mode, one of the 256-entry color Look-Up Tables is reserved for the
default colormap which is advertised to all clients. This colormap always remains
installed, meaning that applications which use it are never subjected to colormap flashing.
The intention is that applications which use only a few colors, such as the standard X
clients, are always displayed with their proper colors.

The other 256-entry colormap is available for use by applications which create and install
(or request installation via a window manager) their own colormaps. This is common for
many raster display programs which require a large number of colors to operate. This
hardware color Look-Up Table always contains the most recently installed underlay visual
colormap (other than the default). The 16-entry Look-Up Table is used for the most
recently installed colormap associated with an overlay visual.

As an additional bonus, X colormaps which are associated with either the 24-bit
TrueColor or 8-bit StaticGray visual types are displayed using a special “pass-
through” mode which actually uses no space within the hardware Look-Up Tables. For
these visual types, the actual data within the framebuffer is passed around the color Look-
Up Tables and directly drives the displayed red, green, and blue values.

This effectively means that windows using the default colormap, an application-defined
underlay colormap, an application-defined overlay colormap, and any using 24-bit
TrueColor or 8-bit StaticGray, can all be displayed simultaneously in 4-bit overlay
mode with no visual anomalies due to colormap flashing.

July 10, 1996 17.

7. RASTERFLEX LOADABLE DDX ENVIRONMENT

The RASTERFLEX Loadable DDX (Device-Dependent X) Environment provides a
dynamically loadable object module which supports the OpenWindows Window System
on the RASTERFLEX Accelerators under the Solaris 2.3 and subsequent releases. Starting
with the OpenWindows 3.3 environment found under Solaris 2.3, SunSoft created an
interface which allows the device-dependent software required to support the X Window
System on a display device to be packaged within a dynamically loadable object module
which is loaded into the standard OpenWindows X Window System Server (Xsun) at run-
time. The RASTERFLEX Loadable DDX Environment uses this capability to seamlessly
integrate the RASTERFLEX-24, RASTERFLEX-32, and RASTERFLEX-HR hardware into the
SunSoft OpenWindows environment. This section provides an overview of the
components provided within the RASTERFLEX Loadable DDX Environment as well as
specific information on how to use the unique features of the RASTERFLEX hardware
within the OpenWindows environment.

7.1. LOADABLE DDX SOFTWARE COMPONENTS

This section describes the various software components which are provided with the
Loadable DDX Environment for the RASTERFLEX framebuffers. Under Solaris 2, the
default location for RASTERFLEX software is /opt/VITrflex. Unless otherwise
specified during software installation, all software components will reside beneath this
directory.

7.1.1. SOFTWARE RELEASE BUTLER

The Software Release Butler is a utility which prompts you with questions regarding the
installation, then performs the installation for you. The questions it asks involve such
things as which portions of the software you wish to install and where you wish to install
them in your file system. Refer to the Software Release Notes provided with your
RASTERFLEX software for information on how to run the Software Release Butler.

7.1.2. SOFTWARE CONFIGURATION MECHANIC

The Software Configuration Mechanic is a utility which will examine the manner in which
you have installed the RASTERFLEX software release on your system, ask you a few basic
configuration questions, and then generate a file containing a set of environment variable
assignments suitable for inclusion in a user .cshrc file. The Software Configuration
Mechanic is a shell script named rfxconfig.sh which by default is stored in /opt/

VITrflex under Solaris 2.X. Refer to the Software Release notes for more specific
information on running the Software Configuration Mechanic.

7.1.3. DEVICE DRIVER

The device driver allows the operating system to communicate with the RASTERFLEX

hardware. It is required in order to run the remainder of the RASTERFLEX software. Refer

USER’S GUIDE
RASTERFLEX

Release 4.527.

to the Software Release notes for more specific information on how to install the device
driver.

7.1.4. LOADABLE DDX MODULE

The Loadable DDX Module is required to run X on the RASTERFLEX hardware under
OpenWindows 3.3 and subsequent releases. Connectware has used the hooks for loadable
DDX support provided by SunSoft to integrate the unique display and acceleration
capabilities of the RASTERFLEX Accelerators into the OpenWindows environment. This
module contains only the object code required to support the X Window System on the
RASTERFLEX devices. Support for other standard Sun devices is included as part of the
standard OpenWindows release or other supplemental packages.

7.2. SETTING UP THE USER ENVIRONMENT

This section outlines the changes which may be required to the user environment after
loading the RASTERFLEX software. It is preferable to add the following commands to the
system .cshrc file or other user start-up files so that these changes apply to all users.

Note that the RASTERFLEX Software Configuration Mechanic, provided as a part of the
RASTERFLEX software release, performs basic environment setup automatically. This
section is provided for advanced users who wish to customize their environment. The
Configuration Mechanic is (by default) installed in /opt/VITrflex/rfxconfig.sh

under Solaris 2.X.

7.2.1. LOCATING SERVER RESOURCES

The Sun OpenWindows server must be able to locate certain resources in order to execute
properly. All resources required by the server are located relative to the top of the standard
OpenWindows release tree, which is identified by the OPENWINHOME environment
variable. For example, if you have loaded OpenWindows under the directory /usr/

openwin [the default], then you would use the following C Shell command to set the
OPENWINHOME variable:

setenv OPENWINHOME /usr/openwin

7.2.2. LOCATING SHARED LIBRARIES

When running the OpenWindows server or clients, it is necessary to add the X11, toolkit
and server support shared libraries, which are supplied with the standard OpenWindows
release, to the library search path. To do this, set the LD_LIBRARY_PATH environment
variable to point to the location where the libraries have been loaded. For example, the
following command could be used:

setenv LD_LIBRARY_PATH $OPENWINHOME/lib:$LD_LIBRARY_PATH

RASTERFLEX LOADABLE DDX ENVIRONMENT
THE RASTERFLEX LOADABLE DDX MODULE

July 10, 1996 37.

7.2.3. SETTING THE PATH VARIABLE

The location of the X Windows System clients and utilities should be added to the
execution search path for all users who wish to use them. For a default installation, use the
following commands to add the appropriate directory to the PATH environment variable:

setenv PATH $OPENWINHOME/bin:$PATH

rehash

7.2.4. LOCATING MANUAL PAGES

If the OpenWindows manual pages have been loaded in a location other than /usr/man,
it is necessary to add the location of these pages to the MANPATH environment variable in
order for them to be located properly. The following command could be used for this
purpose:

setenv MANPATH $OPENWINHOME/man:$MANPATH

After this, the man command is able to locate the OpenWindows manual pages.

7.3. THE RASTERFLEX LOADABLE DDX MODULE

The following sections describe the features of the OpenWindows Loadable DDX Module
for the RASTERFLEX hardware. The RASTERFLEX software release includes an object
module that supports the SunSoft’s OpenWindows implementation of the X Window
System on your SPARCstation. This object module provides full support for the unique
hardware acceleration and display capabilities of the RASTERFLEX frame buffers.

The RASTERFLEX Loadable DDX Module uses the unique acceleration and display
features of the RASTERFLEX hardware transparently. As a result, the application can take
advantage of these features without having to be modified. An application can simply use
standard Xlib graphics primitives, and these operations are automatically accelerated by
the hardware, if applicable.

Other capabilities, such as the use of overlays and shared memory image and pixmap
operations, require explicit selection by the application. Examples of using these
capabilities within a simple X program are provided in the section on RASTERFLEX
ADVANCED FEATURES.

The RASTERFLEX Loadable DDX Module supports all three types of RASTERFLEX frame
buffers: the RASTERFLEX-24, the RASTERFLEX-32, and the RASTERFLEX-HR.

7.4. INVOKING THE OPENWINDOWS X SERVER

This section describes how to invoke the OpenWindows Xsun server on the RASTERFLEX

hardware. It includes certain requirements that must be satisfied, as well as several
methods of invoking the Xsun server on the host system, including

• using the Sun openwin start-up script,

• using the X initializer (xinit), and

USER’S GUIDE
RASTERFLEX

Release 4.547.

• using the X display manager (xdm).

7.4.1. REQUIRED CONDITIONS

Before attempting to invoke the OpenWindows X Window System Server, the following
conditions must be satisfied:

• You must already have installed the OpenWindows 3.3 or later software release
from SunSoft onto your system. Additionally, you should set the OPENWINHOME
environment variable to point to the top of the OpenWindows release tree.

• You should have the location where the OpenWindows executables are stored
($OPENWINHOME/bin by default) in your search path.

• You should have the location where the OpenWindows shared libraries are stored
($OPENWINHOME/lib by default) in your library load path.

7.4.1.1. USING OPENWIN - THE OPENWINDOWS START-UP SCRIPT

The openwin script, which is provided as part of the OpenWindows software release from
Sun, can be used to invoke the Xsun server on the RASTERFLEX device. This is done by
providing the -dev command line option to indicate that the X Window System should be
run on the RASTERFLEX frame buffer device. For example, the following sequence could
be used:

openwin -dev /dev/rfx0

If any additional command line options are to be passed to the Xsun server, they could be
included before or after the -dev option.

7.4.1.2. USING XINIT - THE X SYSTEM INITIALIZER

The X Window System Initializer (xinit) allows you to customize your environment for
invoking the Xsun server and to bring up several initial X clients.

The xinit command program starts the X Window System server and a first client
program (usually a terminal emulator or window manager). When the first client program
exits, xinit kills the server and then terminates.

7.4.1.3. COMMAND FORMAT

The basic format of the xinit command is:
xinit [[client]options][--[server] [display] options]

7.4.1.4. EXAMPLE COMMAND LINE

A simple example of using xinit is illustrated in the following command line:
xinit xterm -- /usr/openwin/bin/Xsun -dev /dev/rfx0

This command line starts up the OpenWindows Xsun server executable using the
RASTERFLEX device (/dev/rfx0), then brings up the xterm terminal emulator client.
Then you can bring up other client applications using the terminal emulator. When finished

RASTERFLEX LOADABLE DDX ENVIRONMENT
INVOKING THE OPENWINDOWS X SERVER

July 10, 1996 57.

using the window system, you can exit from the emulator window by logging out, and the
server is shut down also, since xinit assumes that the user session has ended when
control is returned from the client program or the .xinitrc script (see below).

If no specific client is specified on the command line, xinit looks for a file, called
.xinitrc, in the user’s home directory. This file usually is a shell script containing a
series of command and client programs to execute at window system start-up.

7.4.1.5. EXAMPLE .xinitrc FILE

The following is an example .xinitrc file:

#! /bin/csh

#! Sample client initialization script

xclock &

xterm &

olwm

This script starts up the X clock program, a terminal emulator window, and the OpenLook
Window Manager, starting all commands — except the final one — in background mode.
As a result, the shell script is not exited from until the olwm program stops executing.
When you exit from the window manager (using an Exit option from a root menu), the
window system shuts down automatically.

Always place the client from which you exit the window system — usually a terminal
emulator window or window manager — as the final command in your xinit client
initialization file and ensure that it is not started as a background job.

If you do not specify a client program on the command line and a .xinitrc file does not
exist, then xinit uses the default command:

xterm -geometry +1+1 -n login -display :0

If you do not specify a server program on the command line, then xinit looks for a file,
called .xserverrc, in the user’s home directory. It runs this file as a shell script to start
up the server.

7.4.1.6. EXAMPLE SERVER INITIALIZATION FILE

An example server initialization file for the Xsun server follows:

#! /bin/csh

#! Server initialization shell script

/usr/openwin/bin/Xsun -dev /dev/rfx0

This simple script starts the Sun OpenWindows X11R5 server.

If you do not specify a server command on the command line and an .xserverrc file
does not exist, then xinit uses the following command to start the X server:

USER’S GUIDE
RASTERFLEX

Release 4.567.

X :0 -dev /dev/fb

The X Window System initializer, xinit, provides a simple, yet flexible, means for
invoking the window system server and a set of client applications.

7.4.1.7. USING XDM - THE X DISPLAY MANAGER

The X Display Manager (xdm) program manages a collection of X displays. It is designed
to provide services similar to those provided by init, getty, and login on character
terminals:

• Prompting for login/password,

• Authenticating the user, and

• Running a ‘session’.

The X Display Manager starts up the X server, which is under its control, and displays a
login / password prompt. No other client application can connect to the server when the
login prompt is displayed.

After you successfully login, the server initiates a session, which can be a terminal
emulator, a window manager, or some application-specific program that the user is
running. Once the session is over, and the user exits from the terminal emulator, window
manager, or program, the X display manager resets the X server and redisplays the login /
password prompt.

For complete information and options on configuring the X Display Manager, refer to the
xdm manual pages that are supplied with the OpenWindows software release.

7.4.2. USING MULTIPLE SCREENS

The OpenWindows Xsun server permits the use of multiple screens/frame buffers
controlled by a single invocation of the server. The -dev command line switch is used to
specify the display devices to use. Multiple -dev options may be used to enable a multi-
screen environment. For example, if you wanted to run the X Window System on both a
Sun GX (/dev/cgsix0) device and a RASTERFLEX device, the following options could be
used:

-dev /dev/rfx0 -dev /dev/cgsix0

In order to start a client on a specific screen, the DISPLAY environment can be set using
the notation [node]:[server].[screen]. For example, to start a client on screen 1 of
a locally running X server, the DISPLAY variable could be set to “unix:0.1”.

7.4.3. RASTERFLEX COMPATIBILITY ISSUES

X Window System applications should always be able to work with any compliant X
Window System Server. However, many of the unique display capabilities of the
RASTERFLEX-24, RASTERFLEX-32, and RASTERFLEX-HR hardware cannot be anticipated
by many existing applications. This section provides some tips on how to circumvent some
common problems with such applications.

RASTERFLEX LOADABLE DDX ENVIRONMENT
INVOKING THE OPENWINDOWS X SERVER

July 10, 1996 77.

7.4.3.1. VISUAL SELECTION

The X Window System allows a server to advertise the full range of display capabilities
which it is capable of supporting by advertising a set of visuals.

An X visual is a combination of display depth and color class which define specifically
how an application should view the pixel data which is being manipulated.

For example, an 8-bit PseudoColor visual specifies that there are 8 bits of significant
pixel data and that this data is arbitrarily mapped through a modifiable color Look-Up
Table which maps the 8 bits of data to the displayed red, green, and blue values.

A 24-bit TrueColor visual specifies that there are 24 bits of significant pixel data, and
that the data is further subdivided into three separate channels, one each for red, green, and
blue, and that each channel is mapped through a fixed color lookup operation before
display.

The RASTERFLEX-32 and RASTERFLEX-HR devices are unique in that they advertise a
wide variety of visual classes and depths; whereas most common framebuffers support just
a single depth, but usually multiple classes. The RASTERFLEX-24 device will also support
multiple depths; however, for this device the display depth is selected at server start-up and
only windows of a single depth can be created.

All X Window System servers also define a default visual, which is the visual type from
which the server root window is derived. The compatibility problem which arises is that
many applications simply utilize the default visual without examining the full set of
visuals which are supported by the server to determine the one which is most appropriate
for that application’s purposes. A more sophisticated application might examine the full
set of available visuals and decide to create its windows using the one which best meets
its needs.

The RASTERFLEX-32/HR frame buffers are fully capable of displaying windows of
different visual types on the screen simultaneously; however, the less sophisticated
application will often only utilize the server default. For example, an image display
program may only display data in 8-bit PseudoColor mode (if that is the default) even
though 24-bit TrueColor display capabilities are also available.

To address this issue, the RASTERFLEX server supports command line options in order to
configure the default behavior of the server so as to match the assumed behavior made by
an application program.

This approach, unfortunately, has the following drawbacks:

• The default behavior for one application can be completely inappropriate for
another application — in fact it can cause the other program to not operate at all.
In the latter case, the user must stop and restart the server in order to use the
second application.

• The default behavior can entail large inefficiencies for other applications,
lowering their performance or visual appeal. An example of this would be

USER’S GUIDE
RASTERFLEX

Release 4.587.

running an application which uses a small number of distinct colors in 24-bit
mode.

• The user must explore internal details of each application and experiment with
server configurations until it works.

The server defaults to a common, 8-bit PseudoColor configuration for RASTERFLEX-32
and RASTERFLEX-HR framebuffers. Most recent color applications work in this mode. The
default is 24-bit TrueColor for the RASTERFLEX-24.

7.4.3.2. SELECTING DEFAULT WINDOW DEPTH

The RASTERFLEX Loadable DDX Module supports both 8-bit and 24-bit depth windows
on the same display for the RASTERFLEX-32 and RASTERFLEX-HR devices. For the
RASTERFLEX-24 device, it will allow selection of either 8-bit or 24-bit depth for all
windows at server start-up.

You may set the default depth for the server (the depth of the background pattern and the
depth of windows created for applications that do not explicitly select a depth) with the
defdepth option as follows:

-dev /dev/rfx0 defdepth 8 [Default for RASTERFLEX-32/HR]

or

-dev /dev/rfx0 defdepth 24 [Default for RASTERFLEX-24]

NOTE
The defdepth option is a device modifier option which may only be
specified after a -dev option selecting a particular device. The selection
of the default depth will apply only to this particular device.

7.4.3.3. SELECTING DEFAULT COLOR CLASS

Each window supports one of a number of different color schemes or classes. These
classes are the standard X Window color classes. The RASTERFLEX software supports
color classes on a window-by-window basis. This provides the following advantages:

• Applications that require a specific color class will work with the RASTERFLEX

hardware.

• Fewer server resources must be shared between applications, which helps reduce
the colormap flashing that sometimes occurs when switching between
applications.

• Applications can choose window depth and color class on a per-window basis
rather than being forced to stick with the server default at all times.

You may set the default class for the server (the class of the root window and the class of
windows created for applications that do not explicitly select a class) with the defclass
option as follows:

-dev /dev/rfx0 defclass PseudoColor

RASTERFLEX LOADABLE DDX ENVIRONMENT
INVOKING THE OPENWINDOWS X SERVER

July 10, 1996 97.

NOTE
The defclass option is a device modifier option which may only be
specified after a -dev option selecting a particular device. The selection
of the default class will apply only to this particular device.

The following are the valid color class selections, along with a brief description of each
class:

defclass PseudoColor [Default for defdepth 8]
PseudoColor windows use a color Look-Up Table to convert pixel values
in memory to color intensities on the screen. The RASTERFLEX-32 card
supports PseudoColor for 8- and 4-bit depth color maps.

defclass StaticColor
Similar to PseudoColor above, but the color Look-Up Table cannot be
modified. Instead, a selection of 256 colors spanning the RGB space is
pre-loaded into the Look-Up Table.

defclass StaticGray
The pixel value is interpreted directly as an intensity without going
through a color Look-Up Table. The intensity is applied equally to the
Red, Green and Blue components, creating shades of gray. StaticGray
is supported for 8-bit color maps only.

defclass GrayScale
This is similar to PseudoColor, except there is only one intensity (applied
equally to Red, Green and Blue as in StaticGray) per entry in the color
Look-Up Table. 8-bit color maps only.

defclass DirectColor
This method is supported for 24-bit windows only. It is like the
PseudoColor class for 8-bit windows, but each of the Red, Green and
Blue components is separately indexed from a part of the 24-bit pixel.

defdepth TrueColor [Default value for defdepth 24]
In this method, like StaticGray above, there is no Look-Up Table. But
unlike StaticGray, a different intensity is used for each component. The
value is taken from three different parts of the 24-bit pixel.

7.4.4. USING THE VISUAL SELECTION EXTENSION

The RASTERFLEX Loadable DDX Module supports a special Connectware extension
called the Visual Selection Extension which will allow clients which normally utilize the
default visual of the server to be run using any of the available server visual types. The
Visual Selection Extension allows a user to specify that one of the available visuals be
advertised to a client as if the selected visual were actually the server default. For example,
a user could start the server with the default visual type set to 8-bit PseudoColor so that
all standard clients such as terminal windows and other utilities run in this manner, then
use the Visual Selection extension to cause a raster display application to be run as if the
server default was set to 24-bit TrueColor.

USER’S GUIDE
RASTERFLEX

Release 4.5107.

The Visual Selection Extension is accessed via a special client called vset which allows
the user to specify the visual which will be advertised to the next client program (after
vset) which connects to the RASTERFLEX server. The parameters to vset are:

vset <visual id>

or

vset <visual class> [visual depth]

where <visualid> refers to the specific id of the visual to be advertised as the server default
or <visual class> is one of the valid X visual classes (PseudoColor, TrueColor,
StaticGray, etc.) and <visual depth> is a numeric value representing the desired visual
depth. For example, to start an application named appl so that it believes the server
default visual type is 24-bit TrueColor, the following sequence would be used:

vset TrueColor 24

appl

Immediately after the appl client is started, the default visual type advertised by the server
will revert to the true server default (as specified at start-up via the command line options
described above).

The Visual Selection Extension does not modify the server default visual, nor does it
change any of the attributes of the root window (which always will be of the true server
default visual class/depth). For this reason, clients which attempt to perform operations
directly upon the root window with an altered notion of the default visual will not work
properly. Applications which currently fall into this category include window managers
(twm, mwm, olwm) and screen dump utilities (xmag, xwd).

NOTE
The Visual Selection Extension is only a workaround for existing
applications which do not properly select the desired visual type or allow
explicit visual selection by the end-user. Some applications (as noted
above) may not operate properly when using an altered notion of the
default visual via the Visual Selection extension.

7.4.5. OVERLAY MODE SELECTION

The RASTERFLEX-32 and RASTERFLEX-HR devices are also different from most common
frame buffers in that they supports two distinct layers of display hierarchy — a set of
overlay planes and a set of underlay planes.

NOTE
For most existing applications, the existence of overlay planes is of no
concern and the application will run without any problems. However, the
manner in which the overlay planes are configured (see below) can have
an impact on the manner in which colormaps and other resources are
utilized, so users may benefit from an understanding of these issues.
For application developers who do want to take advantage of the overlay

RASTERFLEX LOADABLE DDX ENVIRONMENT
INVOKING THE OPENWINDOWS X SERVER

July 10, 1996 117.

capabilities of the RASTERFLEX hardware, a programmatic example is
provided in a subsequent section.

The frame buffer within the RASTERFLEX-32 and RASTERFLEX-HR devices actually
contains 32 bits of data for each displayed pixel. The most significant 8 bits of the 32 bits
of pixel data constitute the overlay plane while the remaining 24 bits are used as the
underlay plane to display either 8 or 24-bit data. Windows can be created in either the
underlay planes or the overlay planes, both never both. The decision about which planes a
window resides in is strictly a function of the visual type with which the window has been
created (more on this later).

Figure 7.1. Hardware pixel format.

Overlay windows are regular windows with the added feature of transparency on a pixel-
by-pixel basis. The term “overlay” is used since generally one wishes the transparent
window to be on top of some other window, referred to as the “underlay”. Drawing into
the overlay window does not destroy data in the underlay.

The 8-bit overlay within the RASTERFLEX-32/HR can be configured in one of two
manners: 4-bit Overlay Mode or 8-bit Overlay Mode. The mode used is selected by setting
the RFX_OVERLAY_MODE environment variable before running Xsun. If the
environment variable is not set, the default behavior is to advertise 4-bit overlay
capabilities. For example, to select 8-bit overlay mode, the following command could be
used:

setenv RFX_OVERLAY_MODE 8

7.4.5.1. 4-BIT OVERLAY MODE

In 4-bit Overlay Mode, the 8-bit overlay pixel is actually broken into three separate
components:

• a 4-bit color value (hence the name),

• a 1-bit transparency control bit, and

• 3 bits of control information.

24 23 16 15 8 7 031

LSBMSB

Overlay Blue Green Red

USER’S GUIDE
RASTERFLEX

Release 4.5127.

Figure 7.2. Hardware pixel format — 4-bit overlay model.

The four bits of color value in the 4 least significant bits of the overlay allow 16 distinct
overlay colors to be available. The transparency control bit allows the visibility of the
overlay pixel to be controlled on a pixel-by-pixel basis.

If this bit is set, the overlay pixel is transparent, and the contents of the underlay planes
beneath the window become visible. If the bit is clear (initial state), the pixel is considered
opaque, and the displayed color is selected, based upon the mapping of the 4 bits of color
data through the currently installed Look-Up Table for the overlay planes (see Multiple
Look-Up Table Usage below).

NOTE
The transparency of a given pixel can be changed without making any
changes to the four bits of color data by simply toggling the value of the
transparency bit. This enables overlay data to be non-destructively
turned on and off.

In 4-bit Overlay Mode, the data within the underlay planes can be either 8-bit or 24-bit.
The remaining three control bits are used to determine the format of the underlay data
based upon its visual type. The values within the control bits are maintained entirely by
the RASTERFLEX Loadable DDX Module and are not accessible to application programs.

7.4.5.2. 8-BIT OVERLAY MODE

In 8-bit Overlay Mode, all 8 bits of the overlay pixel are used in determining the displayed
value for the overlay planes. Transparency can still be selected on a pixel-by-pixel basis
in this mode by storing a value of zero (0) within the overlay planes. Two overlay colors
also are reserved for cursor display, leaving a total of 253 colors available for application
usage.

When in 8-bit Overlay Mode, only 24-bit data can be stored within the underlay planes.
This is necessary due to the fact that no control bits are left over for selection of multiple
underlay display formats. Additionally, 8-bit Overlay Mode has implications on the color
Look-Up Table allocation (see below).

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28

24 bit visual in low 24 bits.
5 bit overlay in bits 24 - 28 (bit 28 is transparency bit).

Window tags in bits 29-31.

RedGreenBlue

RASTERFLEX LOADABLE DDX ENVIRONMENT
INVOKING THE OPENWINDOWS X SERVER

July 10, 1996 137.

7.4.6. MULTIPLE LOOK-UP TABLE MANAGEMENT

The RASTERFLEX-32 and RASTERFLEX-HR framebuffers are different from most common
framebuffers in that they also provide multiple hardware color Look-Up Tables; most
framebuffers only have one.

These RASTERFLEX frame buffers actually support two full 256-entry color Look-Up
Tables plus a 16-entry Look-Up Table. Additionally, they have the capability to display
24-bit TrueColor or 8-bit StaticGray data without using any Look-Up Table space.

The following paragraphs describe the manner in which these Look-Up Tables are
managed by the RASTERFLEX devices.

NOTE
The management of hardware color Look-Up Tables places no
limitations on the number of X Colormaps which can be created. Its only
impact is the manner in which X Colormaps are downloaded to the
hardware as a result of colormap installation requests from a client
application or window manager.

The manner in which the overlay planes have been configured at server start-up has a
major implication on the manner in which colormaps are managed.

If the server is started in 8-bit Overlay Mode, the colormap handling is relatively fixed.
One 256-entry color palette is reserved for the 8-bit overlay planes, and the other 256-entry
palette is used for the 24-bit underlay planes. The 16-entry Look-Up Table is not utilized.

In 8-bit Overlay Mode, the hardware color Look-Up Tables always contain the most
recently installed X colormap which is associated with a visual of the proper type. One
Look-Up Table contains the most recently installed overlay visual colormap, and the other
always contains the most recently installed underlay visual colormap.

Hardware Look-Up Table management is more complex when using 4-bit overlay mode,
and also significantly more flexible.

In 4-bit Overlay Mode, one of the 256-entry color Look-Up Tables is reserved for the
default colormap which is advertised to all clients. This colormap always remains
installed, meaning that applications which use it are never subjected to colormap flashing.
The intention is that applications which use only a few colors, such as the standard X
clients, are always displayed with their proper colors.

The other 256-entry colormap is available for use by applications which create and install
(or request installation via a window manager) their own colormaps. This is common for
many raster display programs which require a large number of colors to operate. This
hardware color Look-Up Table always contains the most recently installed underlay visual
colormap (other than the default). The 16-entry Look-Up Table is used for the most
recently installed colormap associated with an overlay visual.

As an additional bonus, X colormaps which are associated with either the 24-bit
TrueColor or 8-bit StaticGray visual types are displayed using a special “pass-

USER’S GUIDE
RASTERFLEX

Release 4.5147.

through” mode which actually uses no space within the hardware Look-Up Tables. For
these visual types, the actual data within the framebuffer is passed around the color Look-
Up Tables and directly drives the displayed red, green, and blue values.

This effectively means that windows using the default colormap, an application-defined
underlay colormap, an application-defined overlay colormap, and any using 24-bit
TrueColor or 8-bit StaticGray can all be displayed simultaneously in 4-bit overlay
mode with no visual anomalies due to colormap flashing.

July 10, 1996 18.

8. HARDWARE OVERVIEW

This section provides an overview of the RASTERFLEX accelerator cards, including a list
of features and descriptions of the functionality of each of the RASTERFLEX cards.

8.1. RASTERFLEX CAPABILITIES

The RASTERFLEX series accelerators are designed for systems that conform to the SBus
specification for SBus add-in cards. This includes all SBus-based Sun SPARCstations, as
well as many SPARCstation-compatible machines.

RASTERFLEX cards and software support applications running under the X Window
System or OpenWindows. RASTERFLEX cards accelerate general windowing operations as
well as some raster primitives relative to dumb framebuffer performance levels. All
RASTERFLEX cards are based on a chip developed by Connectware specifically for these
products. This chip provides the capability for accelerating raster primitives such as
rectangle fills, window copies, and framebuffer input.

The RASTERFLEX-32 and RASTERFLEX-HR enable display and manipulation of true color
(24-bit per pixel) images, as well as graphic overlays and multiple windows of different
pixel depths. For example, you can run a 24-bit desktop publishing application in one
window and an 8-bit spreadsheet in another window on the same screen. Both 24-bit and
8-bit operations are accelerated by the RASTERFLEX hardware. The RASTERFLEX-32 and
RASTERFLEX-HR each occupy a single SBus slot, leaving room for other SBus
peripherals.

The RASTERFLEX-24 enables display and manipulation of true color (24-bit per pixel)
images at an attractive price. It can also be initialized to run in an 8-bit mode. Both 24-bit
and 8-bit operations are accelerated by the RASTERFLEX hardware. The RASTERFLEX-24
fits in a single SBus slot, leaving room for other SBus peripherals.

8.1.1. RASTERFLEX FEATURES

• Accelerated rectangle fill

• Accelerated Bit Block Transfer (BitBlt) (8 and 24 bit)

• Optimized host framebuffer access (for unaccelerated primitives)

• Two independent Look-Up Tables (LUTs) plus overlay and bypass
(RASTERFLEX-32/HR)

• Single SBus slot

• 1024x768 76 Hz non-interlaced video resolution (RASTERFLEX-24/32/HR)

• 1152x900 66 Hz non-interlaced video resolution (RASTERFLEX-24/32/HR)

• 1152x900 76 Hz non-interlaced video resolution (RASTERFLEX-24/32/HR)

• 1280x1024 60 Hz non-interlaced video resolution (RASTERFLEX-HR)

• 1280x1024 67 Hz non-interlaced video resolution (RASTERFLEX-HR)

• 1280x1024 76 Hz non-interlaced video resolution (RASTERFLEX-HR)

USER’S GUIDE
RASTERFLEX

Release 4.528.

• Multiple simultaneous pixel depths (RASTERFLEX-32/HR)

8.1.2. RASTERFLEX-32/HR ARCHITECTURE

The following figure depicts the architecture of the RASTERFLEX-32 and RASTERFLEX-HR
cards.

Figure 8.1. RASTERFLEX-32 and RASTERFLEX-HR Block Diagram

The RASTERFLEX-32 and RASTERFLEX-HR consist of the RASTERFLEX ASIC, a
RAMDAC, and framebuffer memory, plus a few support chips.

The RASTERFLEX ASIC performs most of the support functions required to interface to the
SBus, generate video, and control the framebuffer memory. The architecture of the ASIC
is optimized to provide efficient access from the host to the framebuffer for both 24-bit and
8-bit operations.

The RAMDAC performs lookup table mapping, pixel formatting for display, and
generation of the video signals to the monitor. It provides two full 256-entry lookup tables,
plus a 16-entry lookup table for overlay colormaps. These features allow multiple
windows to maintain their own independent colormaps without the color flashing
associated with single-lookup table framebuffers.

SBus

RAM
RASTERFLEX

RAMDAC

Cursor
Colors

Overlay
16 Entries

LUT 2
256 Entries

LUT 1
256 Entries

Window
 Tags (16)

R

G

B

DACs

Monitor

ASIC

HARDWARE OVERVIEW
RASTERFLEX CAPABILITIES

July 10, 1996 38.

The framebuffer memory is made up of video dynamic RAMs, which are designed
specifically for framebuffer applications. The RASTERFLEX-32 incorporates 4 Megabytes
of RAM, while the RASTERFLEX-HR incorporates 8 Megabytes. The additional RAM on
the RASTERFLEX-HR enables higher resolution display (1280x1024 vs. 1152x900).

8.1.3. RASTERFLEX-24 ARCHITECTURE

The following figure depicts the architecture of the RASTERFLEX-24 card.

Figure 8.2. RASTERFLEX-24 Block Diagram

The RASTERFLEX-24 consists of the RASTERFLEX ASIC, a RAMDAC, and framebuffer
memory, plus a few support chips.

The RASTERFLEX ASIC performs most of the support functions required to interface to the
SBus, generate video, and control the framebuffer memory. The architecture of the ASIC
is optimized to provide efficient access from the host to the framebuffer for both 24-bit and
8-bit operations.

The RAMDAC performs lookup table mapping, pixel formatting for display, and
generation of the video signals to the monitor. It provides a 256-entry lookup tables.

The framebuffer memory is made up of video dynamic RAMs, which are designed
specifically for framebuffer applications. The RASTERFLEX-24 incorporates 3 Megabytes
of RAM.

SBus

RAM
RASTERFLEX

RAMDAC

LUT
256 Entries R

G

B

DACs

Monitor

ASIC

USER’S GUIDE
RASTERFLEX

Release 4.548.

July 10, 1996 19.

9. RASTERFLEX ADVANCED FEATURES

This section contains detailed descriptions of the advanced features of the RASTERFLEX

hardware and is provided for X programmers who want to develop their own applications.
The section includes descriptions on the following topics:

• How to use visual classes other than the server default. The RASTERFLEX-32 and
RASTERFLEX-HR devices support multiple depths, an application may wish to
create windows of a depth different from the server default.

• How to locate and use overlay visuals. The RASTERFLEX-32 and RASTERFLEX-
HR devices provide overlay planes which are accessible to applications.

• How to use the Shared Memory Extension. The Shared Memory Extension is an
efficient mechanism for transferring images and other raster data between the
client and server when both are running on the system. The Shared Memory
Extension is available on the RASTERFLEX-24, RASTERFLEX-32 and
RASTERFLEX-HR devices.

 Each description includes a simple example.

NOTE
This section only provides information on using the unique functionality
associated with the RASTERFLEX accelerators. The concepts described in
this section require some knowlege of X programming. If you are new to
X programming, a more detailed reference may be needed to
understand this section. If you want your programs to be portable, then
you should carefully check for availability of these features before using
them within your programs.

9.1. USING NON-DEFAULT VISUAL CLASSES

The following example creates an 8-bit and a 24-bit window, each with private modifiable
colormaps. The information on which pixel depths are supported by the server is reported
in a structure called an XVisual.

Use XCreateWindow instead of XCreateSimpleWindow,because the later always
creates a window using the default visual.

The Colormap is not optional; the Colormap attribute for a window must match the
visual class of the window.

You must also set the border pixel, since not setting it causes the window to default to
having a BorderPixmap of CopyFromParent, in which case, it will be of the wrong
depth. This example uses only standard Xlib functions; no server extensions are used.

#include <stdio.h>
#include <X11/Xlib.h>
#include <X11/Xutil.h>

Display *display;
int screen;

XVisualInfo getVisual(desiredDepth)

USER’S GUIDE
RASTERFLEX

Release 4.529.

{
 XVisualInfo visual;

 if (!XMatchVisualInfo(display, screen, desiredDepth, PseudoColor, &visual))
 if (!XMatchVisualInfo(display, screen, desiredDepth, DirectColor,
 &visual))
 fprintf(stderr, “Unable to find visual, depth=%d”,
 desiredDepth), exit(1);

 return visual;
}

main()
{
 int i;
 XVisualInfo visual[2];
 Colormap colorMap[2];
 Window window[2];
 XSetWindowAttributes attr;
 XEvent event;
 int mask;
 XColor exactColor, actualColor;

 display = XOpenDisplay(““);
 screen = DefaultScreen(display);

 visual[0] = getVisual(8);
 visual[1] = getVisual(24);
 for (i = 0; i < 2; i++)
 {
 colorMap[i] = XCreateColormap(display, RootWindow(display, screen),
 visual[i].visual, AllocNone);
 if (colorMap[i] == NULL)
 fprintf(stderr, “Can’t create %d bit color map\n”,
 visual[i].depth), exit(1);

 /* These window attributes must be set when creating a window
 * of a different depth than its parent.
 */
 mask = 0;

 attr.colormap = colorMap[i];
 mask |= CWColormap;

 XAllocNamedColor(display, colorMap[i], White”,
 &actualColor,&exactColor);
 attr.border_pixel = actualColor.pixel;
 mask |= CWBorderPixel;

 window[i] = XCreateWindow(display,RootWindow(display,screen),
 10+110*i,10,100,100, 1, visual[i].depth,
 InputOutput,visual[i].visual, mask, &attr);

 XMapRaised(display, window[i]);
 }

 while (XNextEvent(display, &event))
 /* Add event processing here */;
}

9.2. USING OVERLAYS

Overlays are implemented with a property atom defined on the root window of the
RASTERFLEX screen by the server. The atom is called SERVER_OVERLAY_VISUALS.

This method for supporting overlays has become more or less agreed upon by several
members of the X Consortium, but is still subject to change. If the atom is defined, then
the server supports this style of overlays.

RASTERFLEX ADVANCED FEATURES
USING OVERLAYS

July 10, 1996 39.

After you have found the atom, perform an XGetWindowProperty() call to get a list of
OverlayInfo structures as defined below:

typedef enum {NotTransparent, TransparentPixel, TransparentMask} OverlayType;

typedef struct OverlayInfo {
long vid;
OverlayTypetype;
long value;
long layer;

} OverlayInfo;

Overlay windows are created using a special visual class that the server defines with the
following semantics:

• Pixels from underlay windows which normally would be obscured by an overlay
window are visible where the overlay pixel value matches the type and value
fields from the OverlayInfo structure above. If the pixel does not match, then
the pixels from the overlay window itself are visible.

• Overlapping overlay windows do not combine their transparencies; whether an
underlay window is visible is determined solely by the pixel values of the
topmost overlay window.

• Overlay windows are treated identically to underlay windows in all other
respects.

NOTE
The last bullet above deserves some additional commentary, because
the notion of transparency does not match well with the X11 definition of
visibility. Refer to the following figure for this discussion:

USER’S GUIDE
RASTERFLEX

Release 4.549.

Figure 9.1. Transparency and visibility.

The two windows “A” and “B” are both underlay windows. “C” is a child of A and is an
overlay window.

The pixels of A show through only where the pixels of C match the value defined in the
OverlayInfo structure (more on this later). Since the overlay window C is treated as a
regular window by the server, then A actually is obscured by C and no drawing operations
that are directed at A will appear.

The solution is to set GCSubwindowMode to IncludeInferiors in the GC when
drawing to A. This draws into all children of A, but only in the planes that A has in common
with them, which does not include C.

Another consideration is that A receives no Expose events because it is always obscured
by C. However, C can be obscured by other underlay windows such as B, so C will receive
Expose events. In this case, you should go ahead and redraw both C and A, remembering
to set IncludeInferiors when drawing A.

The pixel type and value returned in the OverlayInfo structure indicate how
transparency is implemented for the overlay. If type is TransparentMask, then any
pixel value in the overlay which has at least the same bits as value allows the underlay
to show through, for example, (pixel & value) == value). If type is
TransparentPixel, then any pixel value in the overlay exactly matching value allows

B

A

C

Obscured

RASTERFLEX ADVANCED FEATURES
USING OVERLAYS

July 10, 1996 59.

the underlay to show through. A type of NotTransparent is useless and should never
happen. The overlay field is used to distinguish between multiple layers of overlay data if
support by the display hardware. The RASTERFLEX products only support a single layer so
this field will always be set to one (1).

The 5-bit overlay implemented in the RASTERFLEX-32/HR uses the TransparentMask
style with value equal to 0x10.

NOTE
The value 0x10 is outside of the legal range for the colormap which
allows only 16 entries. This is actually a feature, since it allows the
overlay to display a full 16 opaque colors plus transparent. The 8-bit
overlay uses the TransparentPixel style and is limited to displaying
255 opaque colors.

As mentioned earlier, the XGetWindowProperty() call can return multiple
OverlayInfo structures. Each unique vid value represents a different overlay class
which is simultaneously available. The same vid can appear multiple times, in which case
the type and value fields for that visual are merged.

For instance, you can have both a transparent pixel value, as well as transparent mask bits.
The RASTERFLEX device does not do any of this, however; it just returns one
OverlayInfo structure.

Here is a complete program example using overlays.

/* ovdemo.c
 * This simple demonstration program will create a 24-bit underlay window
 * and fill it with a solid color (red). The window will have a child
 * which is an overlay window (either 5-bit or 8-bit depending on the
 * server overlay mode). Clicking any mouse button within the window
 * will cause a blue rectangular grid to be turned on/off within the
 * overlay window. Pressing any keyboard key will exit from the
 * demonstration.
 *
 * To compile under OpenWindows 3.0:
 *
 * cc -o ovdemo ovdemo.c -I/usr/openwin/include -L/usr/openwin/lib -lX11
 *
 * To compile under X11R5:
 *
 * cc -o ovdemo ovdemo.c -I/usr/X11R5/include -L/usr/X11R5/lib -lX11
 *
 * This demonstration will operate in either 4-bit or 8-bit overlay mode.
 */
#include <stdio.h>
#include <X11/Xlib.h>
#include <X11/Xutil.h>

typedef enum {NotTransparent, TransparentPixel, TransparantMask} OverlayType;

typedef struct OverlayInfo
{
 long vid;
 OverlayType type;
 long value;
 long layer;
} OverlayInfo;

/* Window width and height */
#define WWIDTH 500
#define WHEIGHT 500

USER’S GUIDE
RASTERFLEX

Release 4.569.

/* Spacing of overlay grid */
#define GRID_SIZE 50

main()
{
 Display *dpy;
 int screen;
 Atom overlayAtom;
 int ignore;
 int overlayCount;
 OverlayInfo *pOverlayData;
 XVisualInfo *pOverlayVisual, *pUnderlayVisual;
 XVisualInfo matchInfo;
 Colormap overlayCmap, underlayCmap;
 XSetWindowAttributes winAttr;
 Window overlayWin, underlayWin;
 int exitFlag;
 XEvent event;
 XColor overlayColor, underlayColor, exactColor;
 GC overlayGC, underlayGC;
 XGCValues gcAttr;
 int gridOn = 0;
 int x, y;
 int winWidth = WWIDTH;
 int winHeight = WHEIGHT;
 XWindowChanges winChange;

 /*
 * Open the display and get the default screen
 */
 dpy = XOpenDisplay(““);
 screen = DefaultScreen(dpy);

 /*
 * Get the overlay information from the server property.
 */
 overlayAtom = XInternAtom(dpy, “SERVER_OVERLAY_VISUALS”, True);
 if(!overlayAtom)
 {
 fprintf(stderr,”ovdemo: Cannot find SERVER_OVERLAY_VISUALS
property\n”);
 exit(1);
 }

 XGetWindowProperty(dpy, RootWindow(dpy, screen), overlayAtom, 0,
 sizeof(OverlayInfo), False, AnyPropertyType,
 &ignore, &ignore, &overlayCount,
 &ignore, &pOverlayData);

 /*
 * Get the visual information associated with the first overlay
 * visual type.
 */
 matchInfo.visualid = pOverlayData->vid;
 pOverlayVisual = XGetVisualInfo(dpy, VisualIDMask, &matchInfo, &ignore);
 if(!pOverlayVisual)
 {
 fprintf(stderr,”ovdemo: Could not locate overlay visual info.\n”);
 exit(1);
 }
 if(pOverlayVisual->depth == 8)
 printf(“ovdemo: RasterFLEX is running in 8-bit overlay mode.\n”);
 else
 printf(“ovdemo: RasterFLEX is running in 4-bit overlay mode.\n”);

 /*
 * Get the visual information associated with the 24-bit TrueColor
 * underlay visual type.
 */
 matchInfo.depth = 24;
 matchInfo.class = TrueColor;
 pUnderlayVisual = XGetVisualInfo(dpy, VisualDepthMask|VisualClassMask,
 &matchInfo, &ignore);
 if(!pUnderlayVisual)
 {
 fprintf(stderr,”ovdemo: Could not locate underlay visual info.\n”);
 exit(1);

RASTERFLEX ADVANCED FEATURES
USING OVERLAYS

July 10, 1996 79.

 }

 /*
 * Create an underlay and overlay colormaps of the appropriate visual
 * type if the visual is not the default visual.
 * Allocate a single pixel value in each colormap (red for
 * the underlay, blue for the overlay.
 */
 if(pUnderlayVisual->visual == DefaultVisual(dpy, screen))
 underlayCmap = DefaultColormap(dpy, screen);
 else
 underlayCmap = XCreateColormap(dpy, RootWindow(dpy, screen),
 pUnderlayVisual->visual, AllocNone);
 if(!XAllocNamedColor(dpy, underlayCmap, “red”,
 &underlayColor, &exactColor))
 {
 fprintf(“ovdemo: Could not allocate underlay color\n”);
 exit(1);
 }

 if(pOverlayVisual->visual == DefaultVisual(dpy, screen))
 overlayCmap = DefaultColormap(dpy, screen);
 else
 overlayCmap = XCreateColormap(dpy, RootWindow(dpy, screen),
 pOverlayVisual->visual, AllocNone);
 if(!XAllocNamedColor(dpy, overlayCmap, “blue”,
 &overlayColor, &exactColor))
 {
 fprintf(“ovdemo: Could not allocate overlay color\n”);
 exit(1);
 }

 /*
 * Create the underlay window as a child of the root window. Set
 * the border_pixel and colormap attributes to prevent BadMatch
 * errors for non-default visuals.
 */
 winAttr.border_pixel = 0;
 winAttr.colormap = underlayCmap;
 winAttr.event_mask = StructureNotifyMask;
 underlayWin = XCreateWindow(dpy, RootWindow(dpy, screen), 0, 0,
 winWidth, winHeight, 0, pUnderlayVisual->depth,
 InputOutput, pUnderlayVisual->visual,
 CWBorderPixel|CWColormap|CWEventMask,
 &winAttr);

 /*
 * Create the overlay window which is a child of the underlay window.
 * Set the event mask to receive exposures and user input for the
 * overlay window.
 * NOTE: the window background pixel is set to the transparent value.
 */
 winAttr.background_pixel = pOverlayData->value;
 winAttr.border_pixel = 0;
 winAttr.colormap = overlayCmap;
 winAttr.event_mask = KeyPressMask|ButtonPressMask|ExposureMask;
 overlayWin = XCreateWindow(dpy, underlayWin, 0, 0,
 winWidth, winHeight, 0, pOverlayVisual->depth,
 InputOutput, pOverlayVisual->visual,
 CWBackPixel|CWBorderPixel|CWColormap|CWEventMask,
 &winAttr);

 /*
 * Set the WM_COLORMAP_WINDOWS property so the window manager will
 * know to properly install both underlay and overlay colormaps when
 * the demo gets colormap focus. This is done on the underlay window
 * since it is the top-level (i.e. child of root) window.
 */
 XSetWMColormapWindows(dpy, underlayWin, &overlayWin, 1);

 /*
 * Create a graphics context for use in rendering to each window,
 * setting the foreground color in each to the allocated pixels.
 * NOTE: The underlay GC must have the IncludeInferiors sub_window
 * mode set to prevent window clipping by the (overlay)
 * child.
 */

USER’S GUIDE
RASTERFLEX

Release 4.589.

 gcAttr.subwindow_mode = IncludeInferiors;
 gcAttr.foreground = underlayColor.pixel;
 underlayGC = XCreateGC(dpy, underlayWin,
 GCForeground|GCSubwindowMode, &gcAttr);

 gcAttr.foreground = overlayColor.pixel;
 overlayGC = XCreateGC(dpy, overlayWin, GCForeground, &gcAttr);

 /*
 * Map the windows.
 */
 XMapWindow(dpy, overlayWin);
 XMapWindow(dpy, underlayWin);

 /*
 * Now wait for events and process them.
 */
 exitFlag = 0;
 while(!exitFlag)
 {
 XNextEvent(dpy, &event); switch(event.type)
 {
 case Expose:

 /*
 * On exposure, fill the underlay planes with the fill color.
 */
 XFillRectangle(dpy, underlayWin, underlayGC,
 event.xexpose.x, event.xexpose.y,
 event.xexpose.width, event.xexpose.height);

 /*
 * On exposure, fill the overlay planes with the grid (if
 * it is enabled. For simplicity, we redraw the entire
 * grid. For complex overlay, only the exposed area should
 * be refreshed.
 */
 if(gridOn)
 {
 for(x = 0; x < winWidth; x += GRID_SIZE)
 XDrawLine(dpy, overlayWin, overlayGC,
 x, 0, x, winHeight);
 for(y = 0; y < winHeight; y += GRID_SIZE)
 XDrawLine(dpy, overlayWin, overlayGC,
 0, y, winWidth, y);
 }
 break;

 case ButtonPress:

 /*
 * Toggle the state of the overlay grid flag. Draw the
 * overlay grid if it is turned on.
 */
 gridOn = !gridOn;

 if(gridOn)
 {
 for(x = 0; x < winWidth; x += GRID_SIZE)
 XDrawLine(dpy, overlayWin, overlayGC,
 x, 0, x, winHeight);
 for(y = 0; y < winHeight; y += GRID_SIZE)
 XDrawLine(dpy, overlayWin, overlayGC,
 0, y, winWidth, y);
 }
 else
 XClearArea(dpy, overlayWin, 0, 0, winWidth, winHeight, False);

 break;

 /*
 * Exit if any keyboard key is pressed.
 */
 case KeyPress:
 exitFlag = 1;
 break;

RASTERFLEX ADVANCED FEATURES
USING SHARED MEMORY

July 10, 1996 99.

 /*
 * If the underlay window gets resized, update the width and height
 * parameters and enlarge the child overlay window.
 */
 case ConfigureNotify:
 winWidth = event.xconfigure.width;
 winHeight = event.xconfigure.height;
 winChange.width = winWidth;
 winChange.height = winHeight;
 XConfigureWindow(dpy, overlayWin, CWWidth|CWHeight, &winChange);

 }
 }

 XCloseDisplay(dpy);
 exit(0);
}

9.3. USING SHARED MEMORY

The shared memory extension provides the ability to read and write XImages or pixmaps
without incurring the overhead of having the images passed through the Xlib interprocess
communications channel. This only works when the server and client are running on the
same workstation.

The extension relies on the System V shared memory facility (shmget, shmmat).
Unfortunately, Sun does not make it easy to use this facility under SunOS 4.1.1. The
facility is not in the small kernel which Sun ships with the IPC and IPX. Shared memory
support is enabled by default for Solaris 2. For both SunOS 4.1.X and Solaris 2, the
default maximum shared memory segment size is limited to 1 Megabyte. Consult your Sun
documentation to find out how to reconfigure your OS to support System V shared
memory primitives.

Shared memory images/pixmaps are implemented using a server extension. Test for
the extension before using it, using either of the following two methods to do this:

Status XShmQueryExtension(display)
Display *display;

or
Status XShmQueryVersion(display, major, minor, pixmaps)

Display *display;
int *major, *minor;
Bool *pixmaps;

Either will return True if the extension is available. The arguments major and minor

return the version numbers of the implementation. If pixmaps is True, then the server
supports shared memory Pixmaps in addition to XImages (this is supported on the
RASTERFLEX, see USE OF SHARED MEMORY PIXMAPS late in this section)

9.3.1. USING SHARED MEMORY IMAGES.

The basic sequence of operations for shared memory XImages is as follows:

1. Create the shared memory XImage structure.

2. Create a shared memory segment to store the image data.

3. Inform the server about the shared memory segment.

USER’S GUIDE
RASTERFLEX

Release 4.5109.

4. Use the shared memory XImage, much like a normal one.

Include the following header files in your code:
#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <X11/Xlib.h>
#include <X11/Xutil.h>
#include <X11/extensions/XShm.h>

To create a shared memory XImage, use:
XImage *XShmCreateImage(display, visual, depth, depth, format, data,

shminfo, width, height)
Display *display;
Visual *visual;
unsigned int depth, width, height;
int format;
char *data;
XShmSegmentInfo*shminfo;

Most of the arguments are the same as for XCreateImage; they are be repeated here.

NOTE
 There are no offset, bitmap_pad, or bytes_per_line arguments.
These quantities are defined by the server itself, and your code needs to
abide by them. Unless you already allocated the shared memory
segment (see below), you should pass in NULL for the “data” pointer.

There is one additional argument: shminfo, which is a pointer to a structure of type
XShmSegmentInfo. You must allocate one of these structures such that it has a lifetime
at least as long as that of the shared memory XImage. There is no need to initialize this
structure before the call to XShmCreateImage.

The return value, if all goes well, is an Image structure that you can use for the subsequent
steps.

The next step is to create the shared memory segment. This is best done after the creation
of the XImage, since you need to use the information in that XImage to know how much
memory to allocate. To create the segment, you need a call such as the following:

shminfo.shmid = shmget(IPC_PRIVATE, image->bytes_per_line * image->height,
 IPC_CREAT|0777);

where image is your shared memory XImage.

Of course, follow the rules and do error checking on all of these system calls. Also, be sure
to use the bytes_per_line field, not the width you used to create the XImage as they
can be different.

NOTE
The shared memory ID returned by the system is stored in the shminfo
structure. The server needs that ID to attach itself to the segment.

Next, attach this shared memory segment to your process:
shminfo.shmaddr = image->data = shmat(shminfo.shmid, 0, 0);

The address returned by shmat should be stored in both the XImage structure and the
shminfo structure.

RASTERFLEX ADVANCED FEATURES
USING SHARED MEMORY

July 10, 1996 119.

To finish filling in the shminfo structure, decide how you want the server to attach to the
shared memory segment, and set the readOnly field as follows. Normally, you would
code:

shminfo.readOnly =- False

If you set it to True, the server is not able to write to this segment, and XShmGetImage

calls fail.

Finally, tell the server to attach to your shared memory segment with:
Status XShmAttach(display, &shminfo);

If all goes well, you get a non-zero status back, and your XImage is ready for use.

To write a shared memory XImage into an X drawable, use XShmPutImage:
Status XShmPutImage(display, d, gc, image, src_x, src_y, dest_x, dest_y,

width, height, send_event);
Display display;
Drawable d;
GC gc;
XImage *image;
int src_x, src_y, dest_x, dest_y;
unsigned int width, height;
Bool send_event;

The interface is identical to that of XPutImage and is not documented here.

One additional parameter is called send_event. If this parameter is passed as True, the
server generates a “completion” event when the image write is complete. As a result, your
program can know when it is safe to begin manipulating the shared memory segment
again.

The completion event has type XShmCompletionEvent, which is defined as follows:
typedef struct {
 int type; /* of event */
 unsigned long serial; /* # of last request processed by server */
 Bool send_event; /* true if this came from a SendEvent request */
 Display *display; /* Display the event was read from */
 Drawable drawable; /* drawable of request */
 int major_code; /* ShmReqCode */
 int minor_code; /* X_ShmPutImage */
 ShmSeg shmseg; /* the ShmSeg used in the request */
 unsigned long offset; /* the offset into ShmSeg used in the request */
} XShmCompletionEvent;

The event type value that is used can be determined at run time with a line of the form:
int CompletionType = XShmGetEventBase(display) + ShmCompletion;

If you modify the shared memory segment before the arrival of the completion event, the
results you see on the screen can be inconsistent.

To read image data into a shared memory XImage, use the following:
Status XShmGetImage(display, d, image, x, y, plane_mask)

Display *display;
Drawable d;
XImage image;
int x, y;
unsigned long plane_mask;

where display is the display of interest, d is the source drawable, image is the
destination XImage, x and y are the offset within d, and plane_mask defines which
planes are to be read.

USER’S GUIDE
RASTERFLEX

Release 4.5129.

To destroy a shared memory XImage, first instruct the server to detach from it, then
destroy the segment itself, as follows:

XShmDetach(display, &shminfo);
XDestroyImage(image);
shmdt(shminfo.shmaddr);
shmctl(shminfo.shmid, IPC_RMID, 0);

9.3.2. USE OF SHARED MEMORY PIXMAPS

Unlike X images, for which any image format is usable, the shared memory extension
supports only a single format, for example, XYPixmap or ZPixmap, for the data stored in
a shared memory pixmap. This format is independent of the depth of the image (for 1-bit
pixmaps it does not really matter what this format is) and independent of the screen. Use
XShmPimapFormat to get the format for the server:

int XShmPixmapFormat(display)
Display *display;

If your application can deal with the server pixmap data format, including bits-per-

pixel, create a shared memory segment and shminfo structure in exactly the same way
as is listed above for shared memory XImages. While it is not strictly necessary to create
an XImage first, doing so incurs little overhead and gives you an appropriate
bytes_per_line value to use.

Once you have your shminfo structure filled in, simply call:
Pixmap XShmCreatePixmap(display, d, data, shminfo, width, height, depth)

Display *display;
Drawable d;
char *data;
XShmSegmentInfo*shminfo;
unsigned int width, height, depth;

The arguments are all the same as for XCreatePixmap, with two additions: data and
shminfo. The second of the two is the same old shminfo structure that has been used
before. The first is the pointer to the shared memory segment, and should be the same as
the shminfo.shmaddr field. It is unclear why this is a separate parameter.

If everything works, you get back a pixmap, which you can manipulate in all the usual
ways, with the added bonus of being able to tweak its contents directly through the shared
memory segment. Shared memory pixmaps are destroyed in the usual manner with
XFreePixmap, though you should detach and destroy the shared memory segment itself
as shown above.

Here is a complete example using shared memory XImages:

#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <X11/Xlib.h>
#include <X11/Xutil.h>
#include <X11/extensions/XShm.h>

extern char *shmat();

Display *display;
int screen;

main()
{
 Visual visual;

RASTERFLEX ADVANCED FEATURES
USING SHARED MEMORY

July 10, 1996 139.

 XShmSegmentInfo shminfo;
 Window window;
 XEvent event;
 XMotionEvent *motion = (XMotionEvent *)&event;
 XExposeEvent *expose = (XExposeEvent *)&event;
 XImage *image;
 XGCValues gcv;
 GC gc;
 int shmCompletion;
 int busy;
 int x,y, lastX, lastY, maxx,maxy;

 display = XOpenDisplay(““);
 screen = DefaultScreen(display);

 if (!XShmQueryExtension(display))
 fprintf(stderr, “Shared memory extension not present\n”), exit(1);

 /* Get event number for shared memory operation completion */
 shmCompletion = XShmGetEventBase(display) + ShmCompletion;

 /* Create image and set up shared memory */
 image = XShmCreateImage(display, DefaultVisual(display, screen),
 DefaultDepth(display, screen), ZPixmap, NULL,
 &shminfo, 256, 256);
 shminfo.shmid = shmget(IPC_PRIVATE, image->bytes_per_line * image->height,
 IPC_CREAT | 0777);
 if ((int)shminfo.shmid == -1)
 perror(“shmget”), exit(1);

 shminfo.shmaddr = image->data = shmat(shminfo.shmid, 0, 0);
 if ((int)shminfo.shmaddr == -1)
 perror(“shmat”), exit(1);
 shminfo.readOnly = False;
 if (!XShmAttach(display, &shminfo))
 fprintf(stderr, “XShmAttach failed\n”), exit(1);

 window = XCreateSimpleWindow(display,RootWindow(display,screen), 10, 10,
 256, 256, 1, WhitePixel(display,screen),
 WhitePixel(display,screen));
 XSelectInput(display, window, ExposureMask | KeyPressMask |ButtonMotionMask
 | ButtonPressMask | ButtonReleaseMask);

 XMapRaised(display, window);

 maxx = DisplayWidth(display, screen) - image->width;
 maxy = DisplayHeight(display, screen) - image->height;
 lastX = lastY = x = y = busy = 0;

 XShmGetImage(display, DefaultRootWindow(display), image, x, y, AllPlanes);

 gcv.graphics_exposures = False;
 gc = XCreateGC(display, window, GCGraphicsExposures, &gcv);

 while (1)
 {
 XNextEvent(display, &event);
 switch (event.type) {
 case Expose:
 XShmPutImage(display, expose->window, gc, image,
 expose->x, expose->y, expose->x, expose->y,
 expose->width, expose->height, True);
 busy++;
 break;

 case KeyPress:
 exit(0);

 case MotionNotify:
 /* Skip to last queued Motion event */
 if (XEventsQueued(display, QueuedAfterReading))
 {
 XPeekEvent(display, &event);
 if (event.type == MotionNotify)
 break;
 }

USER’S GUIDE
RASTERFLEX

Release 4.5149.

 x = motion->x_root;
 y = motion->y_root;
 if (x > maxx)
 x = maxx;
 if (y > maxy)
 y = maxy;
 break;

 default:
 if (event.type == shmCompletion)
 busy--;
 break;
 }

 if (!busy && (lastX != x || lastY != y))
 {
 lastX = x;
 lastY = y;

 XShmGetImage(display, DefaultRootWindow(display), image, x, y,
 AllPlanes);
 XShmPutImage(display, window, gc, image, 0, 0, 0, 0,
 image->width, image->height, True);
 busy++;
 }
 }
}

July 10, 1996 1Appendix A.

Appendix A. SPECIFICATIONS

This appendix includes specifications for the RASTERFLEX-24, RASTERFLEX-32, and
RASTERFLEX-HR raster accelerators. The specifications include physical characteristics
and performance specifications.

PHYSICAL CHARACTERISTICS — RASTERFLEX-24

This following table describes physical characteristics for the single-slot RASTERFLEX-24
raster accelerator card.

Table A.1. Physical Characteristics of RF-24

PHYSICAL CHARACTERISTICS — RASTERFLEX-32

This following table describes physical characteristics for the single-slot RASTERFLEX-32
raster accelerator card.

Table A.2. Physical Characteristics of RF-32

Dimensions Single Slot SBus 3.3” x 5.776”

Power 1.5A @ 5 VDC

Temperature 0-40 deg C

Humidity 5 - 80% non-condensing

Qualifications FCC Part 15, Subpart B, Class A

Dimensions Single Slot SBus 3.3” x 5.776”

Power 1.9A @ 5 VDC

Temperature 0-40 deg C

Humidity 5 - 80% non-condensing

Qualifications FCC Part 15, Subpart B, Class A

USER’S GUIDE
RASTERFLEX

Release 4.52Appendix A.

PHYSICAL CHARACTERISTICS — RASTERFLEX-HR

This following tables describe the physical characteristics for the single-slot RASTERFLEX-
HR raster accelerator card.

Table A.3. Physical Characteristics for RF-HR

RASTERFLEX-24/32/HR PERFORMANCE

This following tables provide the 8-bit and 24-bit performance specifications for the
RASTERFLEX raster accelerator cards on a SPARC Classic.

Dimensions Single Slot SBus 3.3” x 5.776”

Power 2A @ 5 VDC

Temperature 0-40 deg C

Humidity 5 - 80% non-condensing

Qualifications FCC Part 15, Subpart B, Class A

Table A.4. 8-bit Performance Specifications for RF-24/32/HR

Rectangle Fill 165 MegaPixels per second

BitBlt 14.3 MegaPixels per second

Frame Buffer Writes 18.6 MegaPixels per second

Text (6x13 image line) 104 K Characters per second

Table A.5. 24-bit Performance Specifications for RF-24/32/HR

Rectangle Fill 58 MegaPixels per second

BitBlt 4.8 MegaPixels per second

Frame Buffer Writes 4.6 MegaPixels per second

Text (6x13 image line) 85.3 K Characters per second

July 10, 1996 1Appendix B.

Appendix B. VIDEO FORMATS

This appendix includes horizontal and vertical timing for the RASTERFLEX video formats.
These formats include 1024x768 (76 Hz), 1152x900 (66 Hz), 1152x900 (76 Hz),
1280x1024 (60 Hz), 1280x1024 (67Hz) and 1280x1024 (76Hz).

1024x768 76 HZ VIDEO FORMAT

The following tables describe the horizontal and vertical timing for the 1024x768 76 Hz
video format used by the RASTERFLEX-24, RASTERFLEX-32, and RASTERFLEX-HR cards.

Frequency Tolerance: 100 ppm (.01%)

Impedance: 75 ohms

Amplitude: .660V with no setup

Separate TTL Sync

Table B.1. Horizontal timing for 1024x768 76 Hz video format

Parameter Pixel Clocks Time

Pixel Clock Frequency 84.3182 MHz

Pixel Clock Period 1 11.866 nsec

Horizontal Frequency 61.999 kHz

Horizontal Period 1360 16.129 usec

Horizontal Sync 128 1.518 usec

Horizontal Back Porch 176 2.087 usec

Horizontal Active 1024 12.144 usec

Horizontal Front Porch 32 .380 usec

Horizontal Blanking 336 3.985 usec

Table B.2. Vertical timing for 1024x768 76 Hz video format

Parameter Lines Time

Vertical Frequency 77.017 Hz

Vertical Period 805 12.984 msec

Vertical Sync 4 64.52 usec

Vertical Back Porch 30 483.88 usec

Vertical Active 768 12.387 msec

Vertical Front Porch 3 43.39 usec

Vertical Blanking 37 596.8 usec

USER’S GUIDE
RASTERFLEX

Release 4.52Appendix B.

1152x900 66 HZ VIDEO FORMAT

The following tables describe the horizontal and vertical timing for the 1152x900 66 Hz
video format used by the RASTERFLEX-24, RASTERFLEX-32, and RASTERFLEX-HR cards.

Frequency Tolerance: 100 ppm (.01%)

Impedance: 75 ohms

Amplitude: .714V with 0.054V setup

Separate TTL Sync

Table B.3. Horizontal timing for 1152x900 66 Hz video format

Parameter Pixel Clocks Time

Pixel Clock Frequency 92.9331 MHz

Pixel Clock Period 1 10.76 nsec

Horizontal Frequency 61.791 kHz

Horizontal Period 1504 16.184 usec

Horizontal Sync 128 1.377 usec

Horizontal Back Porch 192 2.066 usec

Horizontal Active 1152 12.396 usec

Horizontal Front Porch 32 .344 usec

Horizontal Blanking 352 3.788 usec

Table B.4. Vertical timing for 1152x900 66 Hz video format

Parameter Lines Time

Vertical Frequency 65.95 Hz

Vertical Period 937 15.164 msec

Vertical Sync 4 64.74 usec

Vertical Back Porch 31 501.69 usec

Vertical Active 900 14.565 msec

Vertical Front Porch 2 32.37 usec

Vertical Blanking 37 598.8 usec

VIDEO FORMATS
1152x900 76 HZ VIDEO FORMAT

July 10, 1996 3Appendix B.

1152x900 76 HZ VIDEO FORMAT

The following tables describe the horizontal and vertical timing for the 1152x900 76 Hz
video format used by the RASTERFLEX-24, RASTERFLEX-32, and RASTERFLEX-HR cards.

Frequency Tolerance: 100 ppm (.01%)

Impedance: 75 ohms

Amplitude: .660V with no setup

Separate TTL Sync

Table B.5. Horizontal timing for 1152x900 76 Hz video format

Parameter Pixel Clocks Time

Pixel Clock Frequency 105.5615 MHz

Pixel Clock Period 1 9.47 nsec

Horizontal Frequency 71.713 kHz

Horizontal Period 1472 13.944 usec

Horizontal Sync 96 .909 usec

Horizontal Back Porch 208 1.970 usec

Horizontal Active 1152 10.913 usec

Horizontal Front Porch 16 .1516 usec

Horizontal Blanking 320 3.031 usec

Table B.6. Vertical timing for 1152x900 66 Hz video format

Parameter Lines Time

Vertical Frequency 76.048 Hz

Vertical Period 943 13.150 msec

Vertical Sync 8 111.6 usec

Vertical Back Porch 33 460.2 usec

Vertical Active 900 12.55 msec

Vertical Front Porch 2 27.89 usec

Vertical Blanking 43 599.6 usec

USER’S GUIDE
RASTERFLEX

Release 4.54Appendix B.

1280x1024 60Hz VIDEO FORMAT

The following tables describe the horizontal and vertical timing for the 1280x1024 60 Hz
video format used by the RASTERFLEX-HR card.

Frequency Tolerance: 100 ppm (.01%)

Impedance: 75 ohms

Amplitude: .714V with 0.054V setup

Separate TTL sync and sync on green

Table B.7. Horizontal timing for 1280x1024 60Hz video format

Parameter Pixel Clocks Time

Pixel Clock Frequency 107.3864 MHz

Pixel Clock Period 1 9.31 nsec

Horizontal Frequency 63.317 kHz

Horizontal Period 1696 15.793 usec

Horizontal Sync 176 1.639 usec

Horizontal Back Porch 200 1.862 usec

Horizontal Active 1280 11.92 usec

Horizontal Front Porch 40 0.372 usec

Horizontal Blanking 416 3.874 usec

Table B.8. Vertical timing for 1280x1024 60Hz video format

Parameter Lines Time

Vertical Frequency 59.96 Hz

Vertical Period 1056 16.678 msec

Vertical Sync 3 47.38 usec

Vertical Back Porch 26 410.63 usec

Vertical Active 1024 16.17 msec

Vertical Front Porch 3 47.38 usec

Vertical Blanking 32 505.4 usec

VIDEO FORMATS
1280x1024 67Hz VIDEO FORMAT

July 10, 1996 5Appendix B.

1280x1024 67Hz VIDEO FORMAT

The following tables describe the horizontal and vertical timing for the 1280x1024 67 Hz
video format used by the RASTERFLEX-HR card.

Frequency Tolerance: 100 ppm (.01%)

Impedance: 75 ohms

Amplitude: .660V with no setup

Separate TTL Sync

Table B.9. Horizontal timing for 1280x1024 67Hz video format

Parameter Pixel Clocks Time

Pixel Clock Frequency 117.0356 MHz

Pixel Clock Period 1 8.54 nsec

Horizontal Frequency 71.713 kHz

Horizontal Period 1632 13.944 usec

Horizontal Sync 112 0.957 usec

Horizontal Back Porch 224 1.914 usec

Horizontal Active 1280 10.937 usec

Horizontal Front Porch 16 0.137 usec

Horizontal Blanking 352 3.008 usec

Table B.10. Vertical timing for 1280x1024 67Hz video format

Parameter Lines Time

Vertical Frequency 66.71 Hz

Vertical Period 1075 14.990 msec

Vertical Sync 8 111.56 usec

Vertical Back Porch 37 515.95 usec

Vertical Active 1024 14.279 msec

Vertical Front Porch 6 83.667 usec

Vertical Blanking 51 711.17 usec

USER’S GUIDE
RASTERFLEX

Release 4.56Appendix B.

1280x1024 76 HZ VIDEO FORMAT

The following tables describe the horizontal and vertical timing for the 1280x1024 76 Hz
video format used by the RASTERFLEX-HR card.

Frequency Tolerance: 100 ppm (.01%)

Impedance: 75 ohms

Amplitude: .660V with no setup

Separate TTL Sync

Table B.11. Horizontal timing for 1280x1024 76Hz video format

Parameter Pixel Clocks Time

Pixel Clock Frequency 135 MHz

Pixel Clock Period 1 7.41 nsec

Horizontal Frequency 81.13kHz

Horizontal Period 1664 12.326 usec

Horizontal Sync 64 0.474 usec

Horizontal Back Porch 288 2.133 usec

Horizontal Active 1280 9.482 usec

Horizontal Front Porch 32 0.237 usec

Horizontal Blanking 384 2.844 usec

Table B.12. Vertical timing for 1280x1024 76Hz video format

Parameter Lines Time

Vertical Frequency 76.107 Hz

Vertical Period 1066 13.139 msec

Vertical Sync 8 98.607 usec

Vertical Back Porch 32 394.43 usec

Vertical Active 1024 12.622 msec

Vertical Front Porch 2 24.652 usec

Vertical Blanking 42 517.7 usec

July 10, 1996 Index.1

INDEX

Symbols
.xinitrc 6.5, 7.5
.xinitrc file 5.6, 6.5, 7.5

initialize X 5.6
.xserverrc file 5.7, 6.6, 7.5

Numerics
4-bit overlay mode 6.14
4-bit overlay model 5.17, 7.12
5-bit overlay 9.5
8-bit overlay mode 5.18, 7.12
8-bit overlay pixel 6.14

A
abbreviations 1.2
acronyms 1.2
application defaults

setting up for X 5.4
architecture

ASIC 8.2, 8.3
RasterFLEX-HR 8.2, 8.3

B
binary files

include in search path 6.4, 7.4
block diagram

RasterFLEX-32 8.2
RasterFLEX-HR 8.2, 8.3

C
cable

13W3 coaxial D-shell connector 2.4
13W3-to-4BNC connectors 2.4
verify compatibility 2.4

clients
xdm 5.8, 6.6, 7.6

color classes
default 6.12

color database 5.5
Colormap 9.1
Configuration 6.2, 7.2
configuration

console display device 2.1

issues 2.1
two monitors 2.1

Configuration Mechanic 5.3, 6.2, 7.2
console display

selection by system 2.1
conventions

used in document 1.3

D
device driver 4.2, 5.1, 7.1
display device

using multiple screens 5.12, 7.6

F
features

accelerate
window operations 8.1

display
24-bit images 8.1
graphic overlays 8.1
multiple windows of different pixel

depths 8.1
manipulate

24-bit images 8.1
fonts 5.2

default font path 5.5, 6.4, 7.4

H
help

800 number 1.1
electronic mail 1.1

I
invoking the X11R4 server 5.5

location of binary files required 5.6

L
limitations

SPARCstation IPC
B&W framebuffer 2.2

SPARCstation IPX
GX graphics accelerator 2.2

SPARCstation1/1+

USER’S GUIDE
RASTERFLEX™

 Release 4.5Index.2

slots 2.1
Look-Up Tables

using multiple LUTs 5.18, 7.13

M
manual pages

X Window System 5.2
memory 8.3

using shared 9.9
mnemonics 1.2
monitor

verify cable compatibility 2.4
verify compatibility 2.4

O
openwin 6.4, 7.4
OpenWindows

butler 6.1
device driver 6.2
device options

defdepth n 6.9
-dev framebuffer 6.8
grayvis 6.9
left|right|top|bottom 6.9
staticvis 6.9

environment 4.3
setting path variable 6.3, 7.3
setting up user 6.2, 7.2

environment variable
LD_LIBRARY_PATH 6.3, 7.2

initializing X 6.5, 7.4
locating binary files 6.4, 7.4
locating manual pages 6.3, 7.3
locating server resources 6.2, 7.2
locating shared libraries 6.3
manual pages 6.2
server

xnews-rfx 4.3, 6.1
server options

:display 6.7
-auth authorization-file

6.7
-banner 6.8
-cubesize small | large 6.7

-defeateventsecurity 6.7
-escape 6.7
-fp pathname 6.7
-init ’POSTSCRIPT-code’ 6.7
-iobuffersize size 6.8
-nobanner 6.8
-nominexp 6.8
-nosunview 6.8
-overlay4 6.8
-overlay8 6.8

software components 6.1
startup script 5.7
SunView incompatible 6.4
using startup script 6.4, 7.4
using xinit 6.5, 7.4
X11/NeWS server 6.2
X11/NeWS server features 6.3

overlay mode 5.16, 7.10
8-bit 5.18, 7.12
selecting 6.13

overlays
using SERVER_OVERLAY_VISUALS

9.2

P
path variable

setting 5.4
pixel

hardware format 5.16, 5.17, 6.14, 7.11,
7.12

pixmaps
using shared memory 9.12

R
RAMDAC

functions 8.2, 8.3

S
SBus

configuration issues 2.1
slot selection 2.1

sbus-probe-list

designate display device 2.1
how to change 2.3

July 10, 1996 Index.3

screens
multiple 5.12, 6.9, 7.6

server
locating resources for X 5.3
options for Xrfx 5.8
prerequisites 5.5, 6.4, 7.4

setting path variable 5.4
setting up X environment 5.2
shared libraries

including path location 6.4, 7.4
software 4.1

device driver 4.1
installation 4.4
requirements 4.2
windowing systems 4.1

software release
butler 5.1, 7.1

specifications
24-bit

RasterFLEX-32 A.2
8-bit

RasterFLEX-32 A.2
physical

RasterFLEX-32 A.1
RASTERFLEX-HR A.2

static
protection 3.1

SunView
incompatible 5.6

T
Tab Window Manager 5.2
terminal emulator 5.2
twm 5.2

U
user environment 5.2

V
video format

RasterFLEX-32
1152x900 B.1, B.2, B.3

RasterFLEX-HR
1280x1024 60Hz B.4

1280x1024 67Hz B.5, B.6
Visual Selection Extension 5.15, 6.12, 7.9
vset client 5.15, 6.12, 7.10

X
X compatibility issues

RasterFLEX-32 6.10
RasterFLEX-HR 5.12, 6.10, 7.6

X Display Manager
xdm 5.8, 6.6, 7.6

X fonts 5.2
X Window Manager

Tab Window Manager 5.2
X Window System

butler 5.1, 7.1
clients 4.3, 5.2
clock 5.2
color class options

Xrfx -cc DirectColor 5.15,
7.9

Xrfx -cc GrayScale 5.15, 7.9
Xrfx -cc n 5.15
Xrfx -cc Pseudocolor 5.14
Xrfx -cc StaticColor 5.14,

7.9
Xrfx -cc StaticGray 5.14, 7.9
Xrfx -cc TrueColor 5.15

default color classes 6.12
default window depth 5.14, 7.8
development environment 5.2
device driver 5.1, 7.1
environment 4.1, 4.3, 5.1

setting up user 5.2
fonts 5.2
libraries 4.3
locating server resources 5.3
manual pages 5.2
RGB database 5.2, 7.2
selecting default color class 5.14, 6.11,

7.8
selecting default window depth 6.11
selecting overlay mode 5.16, 7.10
selecting visuals 5.12, 6.10, 7.7
server 4.1, 5.1, 5.2, 7.2

USER’S GUIDE
RASTERFLEX™

 Release 4.5Index.4

invoking 5.5
Xrfx 4.3

server options
-a n 5.8
-ar1 milliseconds 5.8
-ar2 milliseconds 5.8
-auth authorization-file

5.9
bc 5.9
-broadcast 5.9
-bs 5.9
-c 5.9
c volume 5.9
-cc class 5.9
-class display-class 5.9
-co filename 5.9
-dd n 5.9
-dev filename 5.9
-displayID display-id 5.10
-dpi n 5.10
-f n 5.10
-fc string 5.10
-fn string 5.10
-fp pathname 5.10
-help 5.10
-I 5.10
indirect host-name 5.10
-ld n 5.10
-logo 5.10
nologo 5.10
-once 5.10
-overlay4 5.10
-overlay8 5.11
-p minutes 5.11
-port port-num 5.11
-query host-name 5.11
-r 5.11
r 5.11
-s minutes 5.11
-screen number 5.11
-su 5.11
-sunsupport 5.11
-t n 5.11
-to seconds 5.11
-v 5.11

v 5.12
-wm 5.12

setting path variable 5.4
setting up application defaults 5.4
software components 5.1
terminal emulator 5.2

X Window System
calculator 5.2
initializer 5.6

X11/NeWS 4.3
incompatible with SunView 4.3

xcalc 5.2
xclock

clock 5.2
XCreateWindow 9.1
xdm

using to start the server 5.8
using to start the server 6.6, 7.6

xinit 5.6, 6.5, 7.4
client initialization file 5.6, 6.5, 7.5
command format 5.6, 6.5, 7.4
server initialization file 5.7, 6.6, 7.5

xnews-rfx 4.3
Xrfx 4.3, 5.1

invoking the server 5.5
xterm 5.2
XVisual 9.1

Document Name

Connectware

Document Comment Form

We would appreciate your comments about this document so that we can continue
to improve our communication with our customers. Please take the time to share
with us any errors which you have found or any suggestions that will help us
improve this document.

Document Number

Your Name

Title

Company Name and Address

Date

Technical Errors (Please indicate page number, correction, and text in which error was found.)

Typographical Errors (Please indicate page number and text in which error was found.)

Need Additional Information? (Please indicate which areas need more detail.)

Information Unclear? (Please indicate what information may have been unclear.)

General Comments

(Thank you for any comments you may have on this document, its layout, and discussion.)

Please copy this page and mail or fax your comments to:

Technical Publications
Connectware, Inc.
1301 East Arapaho Road
Richardson, TX 75081

Fax number 214 997 4309

16-DA3019-2

Connectware

1301 East Arapaho
Richardson,
TX 75081

