File Formats mess(4)

NAME
MESS — Multiple Encoded Switch State protocol

DESCRIPTION
The Multiple Encoding Switch State protocol is a method of encoding the state over time of a set of
two-state switches (such as found in the MJS PedalBox device).

The protocol has been designed to represent the switch states both as binary bit-flags, one per switch;
but to also be a printable-ASCII encoding using no unusual characters. These attributes allow the switch
states to be easily interpreted, synchronously and efficiently with programming langauges supporting bit-
wise operations (C, C++, Java, Korn Shell, etc) but also by text-based scripting languages (Bourne Shell,
Perl, awk, Windows Scripting Host, 4DOS, et al).

The protocol is byte-size agnostic, subject to a minimum of 7 bits per byte.

SPECIFICATION
The protocol consists of a stream of "packets' each of which describes the instantaneous state of all
switches in the source device.

Each packet consists of upto 126 payload bytes followed by an ASCII carriage-return character, in turn
followed by an ASCII linefeed character.

Each payload byte represents the state of a group of four switches in the four least-significant bits, start-
ing from the least-significant: for each switch in the group, a set bit indicates "on/closed" and a clear
(zero) bit indicates "off/open/not-present”. The 5th- and 6th-least-significant bit of each payload byte
must be clear (zero), the 7th-least-significant bit must be set (one) and all more-significant bits of each
byte must be clear (zero).

Consumers of the protocol must completely ignore any byte where the 7th-least-significant bit is clear
(zero).

For devices with upto four switches, a single payload byte per packet is sufficient; for devices with more
than four switches, each subsequent payload byte (within the same packet) encodes the state of the
"next" group of four switches. Given the maximum packet-size of 128 bytes, the protocol can represent
the state of a maximum of 504 switches simultaneoudly, per device.

EXAMPLES
In C, to determine whether either switch 1 or 3 is"on":

#include "mess.h"
char pktfMESS_PKT_MAXLEN];

if ((pkt[O] & Ox4F) & 0x05)
To do the same, in UNIX Shell:

case "$pkt" in
[ACDEFGIKLMNOQID ...
esac

In C, to determine whether both switches 1 and 3 are "on":
if ((pkt[O] & Ox4F) == 0x45)

and in the UNIX Shell:
case "$pkt" in

[EM]D .5

esac

RetroChallenge Last change: 23 Jan 2013 1

File Formats

The packet contents for all possible states of a four-switch device are:

O Switch Number Packet Contents O
Sh 3rd 2nd st (hexadecimal) (ASCII) o
Epff off off off 0x400x0d Ox0a @\r\n [
Coff off off on 0x410x0d 0x0a A\n\n O
Ebff off on off 0x42 0x0d Ox0a B\r\n B
[off off on on 0x430x0d Ox0a C\r\n 0
off on off off 0x440x0d Ox0a D\rin Qg
Coff on off on 0x450x0d 0x0a E\rn O
Boff on on off 0x46 0x0d OxOa Rr\n B
(off on on on 0x470x0d 0x0a G\n\n
(pn off off off 0x480x0d Ox0a H\nn [
(bn off off on 0x49 0x0d 0x0a \\n O
Ebn off on off Ox4a0x0dOx0a Ann B
con off on on 0Ox4b 0x0d Ox0a K\n\in 0
on on off off Ox4c 0x0d OxOa L\\n 0O
Con on off on 0x4d 0x0d Ox0a M\n\n O
Ebn on on off Ox4e 0x0d OxOa N\n\n B
en on on on Ox4f Ox0d OxOa onn

The packet contents for all possible states of a five-switch device are:

SEE ALSO

pdlbox(1), mess avc(l)

RetroChallenge

O Switch Number Packet Contents O
Shth 4th 3d 2nd 1t (hexadecimal) (AsCl) o
Epff off off off off 0x40 0x40 0x0d Ox0a @@\r\n [
[off off off off on 0x41 0x40 0x0d Ox0a A@\r\n O
Ebff off off on off 0x42 0x40 0x0d Ox0a B@\r\n g
|:pff off off on on 0x43 0x40 0x0d Ox0a C@\r\n O
off off on off off 0x44 0x40 0x0d Ox0a D@\r\n [
[off off on off on 0x45 0x40 0x0d Ox0a E@\nn O
Ebff off on on off 0x46 0x40 0x0d Ox0a F@\r\n B
pff off on on on 0x47 0x40 0x0d Ox0a G@\r\n
moff on off off off 0x48 0x40 0x0d Ox0a H@\nn [
Coff on off off on 0x49 0x40 0x0d Ox0a 1@\\n O
Ebff on off on off Ox4a 0x40 0x0d Ox0a J@\r\n g
I:pff on off on on 0x4b 0x40 0x0d Ox0a K@\r\n O
off on on off off Ox4c 0x40 0x0d Ox0a L@\r\n [
[off on on off on 0Ox4d 0x40 0x0d 0Ox0a M@\r\n O
Ebff on on on off Ox4e 0x40 0x0d Ox0a N@\r\n g
|:pff on on on on Ox4f 0x40 Ox0d OxO0a O@\r\n O
mon off off off off 0x40 O0x41 0x0d Ox0a @A\r\n [
Con off off off on 0x41 0x41 0x0d Ox0a AA\nn O
Ebn off off on off 0x42 O0x41 0x0d Ox0a BA\r\n B
on off off on on 0x43 0x41 0x0d Ox0a CA\nn
mon off on off off 0x44 0x41 0x0d Ox0a DA\r\n O
Con off on off on 0x450x41 0x0d Ox0a EA\W\n O
Ebn off on on off Ox460x410x0d Ox0a FA\nn g
en off on on on 0x47 0x41 0x0d Ox0a GA\r\n O
mon on off off off 0x48 0x41 0x0d Ox0a HA\r\n [
on on off off on 0x49 0x41 0x0d 0x0a IA\nn O
Ebn on off on off Ox4da 0x41 0x0d Ox0a JA\n\n g
on on off on on Ox4b 0x41 0x0d Ox0a KA\n\n O
pn on on off off Ox4c 0x41 0x0d Ox0a LA\nn [
bon on on off on 0Ox4d 0x41 0x0d Ox0a MA\rnn 0O
Ebn on on on off Ox4e 0x41 0x0d Ox0a NA\n\n B
on on on on on Ox4f 0x41 0x0d Ox0a OAWn 4

Last change: 23 Jan 2013

mess(4)

File Formats mess(4)

BUGS
This protocol does not distinguish between "off" and "not present" states, thus, for example, a four-
switch device with the 3rd and 4th switches in the "off" state cannot be programatically distinguished
from a (merely) two-switch device.

RetroChallenge Last change: 23 Jan 2013 3

