
File Formats mess (4)

NAME
MESS – Multiple Encoded Switch State protocol

DESCRIPTION
The Multiple Encoding Switch State protocol is a method of encoding the state over time of a set of
two-state switches (such as found in the MJS PedalBox device).

The protocol has been designed to represent the switch states both as binary bit-flags, one per switch;
but to also be a printable-ASCII encoding using no unusual characters. These attributes allow the switch
states to be easily interpreted, synchronously and efficiently with programming langauges supporting bit-
wise operations (C, C++, Java, Korn Shell, etc) but also by text-based scripting languages (Bourne Shell,
Perl, awk, Windows Scripting Host, 4DOS, et al).

The protocol is byte-size agnostic, subject to a minimum of 7 bits per byte.

SPECIFICATION
The protocol consists of a stream of "packets" each of which describes the instantaneous state of all
switches in the source device.

Each packet consists of upto 126 payload bytes followed by an ASCII carriage-return character, in turn
followed by an ASCII linefeed character.

Each payload byte represents the state of a group of four switches in the four least-significant bits, start-
ing from the least-significant: for each switch in the group, a set bit indicates "on/closed" and a clear
(zero) bit indicates "off/open/not-present". The 5th- and 6th-least-significant bit of each payload byte
must be clear (zero), the 7th-least-significant bit must be set (one) and all more-significant bits of each
byte must be clear (zero).

Consumers of the protocol must completely ignore any byte where the 7th-least-significant bit is clear
(zero).

For devices with upto four switches, a single payload byte per packet is sufficient; for devices with more
than four switches, each subsequent payload byte (within the same packet) encodes the state of the
"next" group of four switches. Given the maximum packet-size of 128 bytes, the protocol can represent
the state of a maximum of 504 switches simultaneously, per device.

EXAMPLES
In C, to determine whether either switch 1 or 3 is "on":

#include "mess.h"
char pkt[MESS_PKT_MAXLEN];
...
if ((pkt[0] & 0x4F) & 0x05)

To do the same, in UNIX Shell:

case "$pkt" in
[ACDEFGIKLMNO]∗) ... ;;
esac

In C, to determine whether both switches 1 and 3 are "on":

if ((pkt[0] & 0x4F) == 0x45)

and in the UNIX Shell:

case "$pkt" in
[EM]∗) ... ;;
esac

RetroChallenge Last change: 23 Jan 2013 1

File Formats mess (4)

The packet contents for all possible states of a four-switch device are:

_ ___
Switch Number Packet Contents

4th 3rd 2nd 1st (hexadecimal) (ASCII)_ ___
off off off off 0x40 0x0d 0x0a @\r\n
off off off on 0x41 0x0d 0x0a A\r\n
off off on off 0x42 0x0d 0x0a B\r\n
off off on on 0x43 0x0d 0x0a C\r\n
off on off off 0x44 0x0d 0x0a D\r\n
off on off on 0x45 0x0d 0x0a E\r\n
off on on off 0x46 0x0d 0x0a F\r\n
off on on on 0x47 0x0d 0x0a G\r\n
on off off off 0x48 0x0d 0x0a H\r\n
on off off on 0x49 0x0d 0x0a I\r\n
on off on off 0x4a 0x0d 0x0a J\r\n
on off on on 0x4b 0x0d 0x0a K\r\n
on on off off 0x4c 0x0d 0x0a L\r\n
on on off on 0x4d 0x0d 0x0a M\r\n
on on on off 0x4e 0x0d 0x0a N\r\n
on on on on 0x4f 0x0d 0x0a O\r\n_ ___ 
















































The packet contents for all possible states of a five-switch device are:

_ __
Switch Number Packet Contents

5th 4th 3rd 2nd 1st (hexadecimal) (ASCII)_ __
off off off off off 0x40 0x40 0x0d 0x0a @@\r\n
off off off off on 0x41 0x40 0x0d 0x0a A@\r\n
off off off on off 0x42 0x40 0x0d 0x0a B@\r\n
off off off on on 0x43 0x40 0x0d 0x0a C@\r\n
off off on off off 0x44 0x40 0x0d 0x0a D@\r\n
off off on off on 0x45 0x40 0x0d 0x0a E@\r\n
off off on on off 0x46 0x40 0x0d 0x0a F@\r\n
off off on on on 0x47 0x40 0x0d 0x0a G@\r\n
off on off off off 0x48 0x40 0x0d 0x0a H@\r\n
off on off off on 0x49 0x40 0x0d 0x0a I@\r\n
off on off on off 0x4a 0x40 0x0d 0x0a J@\r\n
off on off on on 0x4b 0x40 0x0d 0x0a K@\r\n
off on on off off 0x4c 0x40 0x0d 0x0a L@\r\n
off on on off on 0x4d 0x40 0x0d 0x0a M@\r\n
off on on on off 0x4e 0x40 0x0d 0x0a N@\r\n
off on on on on 0x4f 0x40 0x0d 0x0a O@\r\n
on off off off off 0x40 0x41 0x0d 0x0a @A\r\n
on off off off on 0x41 0x41 0x0d 0x0a AA\r\n
on off off on off 0x42 0x41 0x0d 0x0a BA\r\n
on off off on on 0x43 0x41 0x0d 0x0a CA\r\n
on off on off off 0x44 0x41 0x0d 0x0a DA\r\n
on off on off on 0x45 0x41 0x0d 0x0a EA\r\n
on off on on off 0x46 0x41 0x0d 0x0a FA\r\n
on off on on on 0x47 0x41 0x0d 0x0a GA\r\n
on on off off off 0x48 0x41 0x0d 0x0a HA\r\n
on on off off on 0x49 0x41 0x0d 0x0a IA\r\n
on on off on off 0x4a 0x41 0x0d 0x0a JA\r\n
on on off on on 0x4b 0x41 0x0d 0x0a KA\r\n
on on on off off 0x4c 0x41 0x0d 0x0a LA\r\n
on on on off on 0x4d 0x41 0x0d 0x0a MA\r\n
on on on on off 0x4e 0x41 0x0d 0x0a NA\r\n
on on on on on 0x4f 0x41 0x0d 0x0a OA\r\n_ __ 
























































































SEE ALSO
pdlbox(1), mess_avc(1)

RetroChallenge Last change: 23 Jan 2013 2

File Formats mess (4)

BUGS
This protocol does not distinguish between "off" and "not present" states, thus, for example, a four-
switch device with the 3rd and 4th switches in the "off" state cannot be programatically distinguished
from a (merely) two-switch device.

RetroChallenge Last change: 23 Jan 2013 3

